Physicochemical Properties
Molecular Formula | C44H58O13 |
Molecular Weight | 794.92 |
Exact Mass | 794.387 |
CAS # | 1501943-08-3 |
PubChem CID | 74822653 |
Appearance | Typically exists as solid at room temperature |
Density | 1.4±0.1 g/cm3 |
Index of Refraction | 1.639 |
LogP | 9.13 |
Hydrogen Bond Donor Count | 5 |
Hydrogen Bond Acceptor Count | 13 |
Rotatable Bond Count | 6 |
Heavy Atom Count | 57 |
Complexity | 1680 |
Defined Atom Stereocenter Count | 0 |
SMILES | O1C2(CO)C(C3(C4C(C)CC3C35C(C)C6C(C(C)(CC7CCC(C(C=CC=CC(=O)O4)OC(CC(C)C)=O)C7C)O)(C(C3C12)OC(C1C=CC=CC=1)(O6)O5)O)O)O |
InChi Key | ZAVYYYQORHVVFN-UHFFFAOYSA-N |
InChi Code | InChI=1S/C44H58O13/c1-22(2)18-32(47)52-29-14-10-11-15-31(46)53-34-23(3)19-30-41(34,50)38(48)40(21-45)36(54-40)33-37-43(51,39(6,49)20-26-16-17-28(29)24(26)4)35-25(5)42(30,33)57-44(55-35,56-37)27-12-8-7-9-13-27/h7-15,22-26,28-30,33-38,45,48-51H,16-21H2,1-6H3 |
Chemical Name | [6,7,24,25-tetrahydroxy-5-(hydroxymethyl)-10,24,31,33-tetramethyl-13-oxo-28-phenyl-4,12,27,29,32-pentaoxaoctacyclo[26.3.1.119,22.01,8.02,26.03,5.07,11.025,30]tritriaconta-14,16-dien-18-yl] 3-methylbutanoate |
HS Tariff Code | 2934.99.9001 |
Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
ln Vitro | In a dose-dependent way, trigothysoid N (5, 15 and 45 μM; 48 hours) suppresses the development of tumor cells [1]. Trigothysoid N (5, 10 and 20 μM; 48 hours) stops the cell cycle in the G0/G1 phase and causes apoptosis [1]. Trigothysoid N (5, 10 and 20 μM; 48 hours) stimulates apoptosis in A549 cells by inducing MMP depolarization and elevating cellular ROS generation [1]. By controlling the FAK signaling pathway, Trigothysoid N prevents A549 cell metastasis and causes apoptosis via the mitochondria-dependent signaling route [1]. |
ln Vivo | In a transgenic zebrafish model, Trigothysoid N (0.025, 0.05, and 0.1 μM; 4 h) demonstrates anti-angiogenic and anti-A549 tumor action [1]. |
Cell Assay |
Apoptosis Analysis[1] Cell Types: A549 cells Tested Concentrations: 5, 10, and 20 μM Incubation Duration: 48 h Experimental Results: Resulted the Apoptotic cell percentages increased from 9.9% (control) to 12.6% (5.0 μM), 15.4% (10.0 μM), and 59.0% (20.0 μM). |
Animal Protocol |
Animal/Disease Models: Transgenic zebrafish model transplanted with CM-DiI-stained A549 cells[1] Doses: 0.025, 0.05, and 0.1 μM Route of Administration: Experimental Results: Inhibited angiogenesis . Disrupted intersegmental blood vessels (ISVs) and dorsal longitudinal anastomotic vessels (DLAVs) in zebrafish. Inhibited tumor cell proliferation with inhibitory rates of 5.7% (0.025 μM), 14.8% (0.05 μM) and 56.9% (0.1 μM), respectively. |
References | [1]. Li Y, et al. Trigothysoid N inhibits tumor proliferation and migration by targeting mitochondria and the STAT3/FAK pathway[J]. Arabian Journal of Chemistry, 2023, 16(8): 104930. |
Additional Infomation | Trigothysoid N has been reported in Trigonostemon reidioides and Trigonostemon with data available. |
Solubility Data
Solubility (In Vitro) | May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples |
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.2580 mL | 6.2899 mL | 12.5799 mL | |
5 mM | 0.2516 mL | 1.2580 mL | 2.5160 mL | |
10 mM | 0.1258 mL | 0.6290 mL | 1.2580 mL |