Cetrorelix mono-acetate (SB-75) is a novel, potent and synthetic gonadotropin-releasing hormone (GnRH) receptor antagonist with an IC50 of 1.21 nM. Cetrorelix acetate is a decapeptide that may be applied to the treatment of infertility. An autocrine regulatory system of cell proliferation has been shown to be triggered by the expression of GnRH (GnRH-I, LHRH) and its receptor in a variety of human malignant tumors, including ovarian cancers. GnRH and its superagonistic analogs decrease the proliferation of human ovarian cancer cell lines in a dose- and time-dependent manner.
Physicochemical Properties
| Molecular Formula | C72H96CLN17O16 |
| Molecular Weight | 1491.11 |
| Exact Mass | 1489.69 |
| CAS # | 145672-81-7 |
| Related CAS # | Cetrorelix; 120287-85-6; Cetrorelix diacetate; 130143-01-0 |
| PubChem CID | 25078429 |
| Appearance | White to off-white solid powder |
| LogP | 6.023 |
| Hydrogen Bond Donor Count | 17 |
| Hydrogen Bond Acceptor Count | 18 |
| Rotatable Bond Count | 38 |
| Heavy Atom Count | 106 |
| Complexity | 2870 |
| Defined Atom Stereocenter Count | 10 |
| SMILES | C[C@H](C(=O)N)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CCCNC(=O)N)NC(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CO)NC(=O)[C@@H](CC3=CN=CC=C3)NC(=O)[C@@H](CC4=CC=C(C=C4)Cl)NC(=O)[C@@H](CC5=CC6=CC=CC=C6C=C5)NC(=O)C.CC(=O)O |
| InChi Key | KFEFLCOCAHJBEA-ANRVCLKPSA-N |
| InChi Code | InChI=1S/C70H92ClN17O14.C2H4O2/c1-39(2)31-52(61(94)82-51(15-9-28-77-69(73)74)68(101)88-30-10-16-58(88)67(100)79-40(3)59(72)92)83-60(93)50(14-8-29-78-70(75)102)81-63(96)54(34-43-20-25-49(91)26-21-43)86-66(99)57(38-89)87-65(98)56(36-45-11-7-27-76-37-45)85-64(97)55(33-42-18-23-48(71)24-19-42)84-62(95)53(80-41(4)90)35-44-17-22-46-12-5-6-13-47(46)32-44;1-2(3)4/h5-7,11-13,17-27,32,37,39-40,50-58,89,91H,8-10,14-16,28-31,33-36,38H2,1-4H3,(H2,72,92)(H,79,100)(H,80,90)(H,81,96)(H,82,94)(H,83,93)(H,84,95)(H,85,97)(H,86,99)(H,87,98)(H4,73,74,77)(H3,75,78,102);1H3,(H,3,4)/t40-,50-,51+,52+,53-,54+,55-,56-,57+,58+;/m1./s1 |
| Chemical Name | (2S)-1-[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2R)-2-[[(2R)-2-acetamido-3-naphthalen-2-ylpropanoyl]amino]-3-(4-chlorophenyl)propanoyl]amino]-3-pyridin-3-ylpropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-(carbamoylamino)pentanoyl]amino]-4-methylpentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]-N-[(2R)-1-amino-1-oxopropan-2-yl]pyrrolidine-2-carboxamide;acetic acid |
| Synonyms | SB 075 acetate; NS-75-A; SB075 acetate; NS-75 A; Cetrorelix acetate; Cetrorelix; Cetrotide; D 20761; D-20761; D20761; NS-75A; NS 75A; SB-075 acetate |
| HS Tariff Code | 2934.99.9001 |
| Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
| Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
| Targets | GnRH ( IC50 = 1.21 nM ) |
| ln Vitro | Cetrorelix Acetate inhibits the growth of the ES-2 cell line at 1000 ng/ml. The antiproliferative effects of Cetrorelix Acetate are similar to those of GnRH-I agonists, suggesting that the GnRH-I system in cancer cells may not be subject to the GnRH-I agonists and antagonists dichotomy[2]. |
| References |
[1]. Characterization of gonadotropin-releasing hormone analogs based on a sensitive cellular luciferase reporter gene assay. Anal Biochem. 1997 Aug 15;251(1):17-23. [2]. Role of gonadotropin-releasing hormone (GnRH) in ovarian cancer. Reprod Biol Endocrinol. 2003 Oct 7;1:65. |
| Additional Infomation |
Cetrorelix acetate is the acetic acid salt of cetrorelix. A gonadotrophin-releasing hormone (GnRH) antagonist, it is used for treatment of infertility and of hormone-sensitive cancers of the prostate and breast. It has a role as a GnRH antagonist and an antineoplastic agent. It is an oligopeptide and an acetate salt. It contains a cetrorelix. See also: Cetrorelix Acetate (annotation moved to). Drug Indication Prevention of premature ovulation in patients undergoing a controlled ovarian stimulation, followed by oocyte-pick-up and assisted-reproductive techniques. In clinical trials, Cetrotide was used with human menopausal gonadotropin (HMG), however, limited experience with recombinant follicule-stimulating hormone (FSH) suggested similar efficacy. |
Solubility Data
| Solubility (In Vitro) |
DMSO: ~50 mg/mL (~33.5 mM) H2O: ~2 mg/mL (~1.3 mM) |
| Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
| Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
| 1 mM | 0.6706 mL | 3.3532 mL | 6.7064 mL | |
| 5 mM | 0.1341 mL | 0.6706 mL | 1.3413 mL | |
| 10 mM | 0.0671 mL | 0.3353 mL | 0.6706 mL |