PeptideDB

Geranyl diphosphate triammonium (Geranyl pyrophosphate triammonium) 116057-55-7

Geranyl diphosphate triammonium (Geranyl pyrophosphate triammonium) 116057-55-7

CAS No.: 116057-55-7

Geranyl diphosphate triammonium is a key intermediate in the isoprenoid biosynthetic pathway (IBP). Geranyl diphosphate
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Geranyl diphosphate triammonium is a key intermediate in the isoprenoid biosynthetic pathway (IBP). Geranyl diphosphate triammonium plays a key role in cellular metabolism and is responsible for the production of sterols and non-sterol isoprenoids.

Physicochemical Properties


Molecular Formula C10H29N3O7P2
Molecular Weight 365.30
Exact Mass 365.148
CAS # 116057-55-7
Related CAS # Geranyl diphosphate;763-10-0
PubChem CID 15624056
Appearance White to light yellow solid powder
Melting Point >110°C (dec.) (lit.)
LogP 3.877
Hydrogen Bond Donor Count 6
Hydrogen Bond Acceptor Count 10
Rotatable Bond Count 8
Heavy Atom Count 22
Complexity 431
Defined Atom Stereocenter Count 0
SMILES

CC(=CCC/C(=C/COP(=O)(O)OP(=O)(O)O)/C)C.N.N.N

InChi Key LDHQLWOKXNHSSJ-ICWQEWPPSA-N
InChi Code

InChI=1S/C10H20O7P2.3H3N/c1-9(2)5-4-6-10(3)7-8-16-19(14,15)17-18(11,12)13;;;/h5,7H,4,6,8H2,1-3H3,(H,14,15)(H2,11,12,13);3*1H3/b10-7+;;;
Chemical Name

azane;[(2E)-3,7-dimethylocta-2,6-dienyl] phosphono hydrogen phosphate
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Human Endogenous Metabolite
ln Vitro An isoprenoids (IsoP) called geranyl diphosphate (geranyl pyrophosphate) triammonium is involved in a variety of biological functions, including the creation of cholesterol[1].
References

[1]. Simultaneous Quantitation of Isoprenoid Pyrophosphates in Plasma and Cancer Cells Using LC-MS/MS. Molecules. 2018 Dec 11;23(12):3275.

[2]. Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. Plant Cell. 2010 Feb;22(2):454-67.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.7375 mL 13.6874 mL 27.3748 mL
5 mM 0.5475 mL 2.7375 mL 5.4750 mL
10 mM 0.2737 mL 1.3687 mL 2.7375 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.