PeptideDB

Gemcitabine triphosphate trisodium (dFdCTP trisodium)

Gemcitabine triphosphate trisodium (dFdCTP trisodium)

CAS No.:

Gemcitabine triphosphate (trisodium) is one of the two nucleoside metabolites of gemcitabine in cells. The other is the
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Gemcitabine triphosphate (trisodium) is one of the two nucleoside metabolites of gemcitabine in cells. The other is the active diphosphate (dFdDTP). Gemcitabine triphosphate can be used as a standard in radiolabeled probe imaging studies to identify tumors responsive to gemcitabine and to evaluate the cellular uptake and retention of gemcitabine.

Physicochemical Properties


Molecular Formula C9H11F2N3NA3O13P3
Molecular Weight 569.08
Appearance White to off-white solid powder
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets DNA synthesis; metabolite of Gemcitabine
ln Vitro Gemcitabine is a nucleoside analogue with excellent clinical activity against solid tumors. Within the cell, gemcitabine is rapidly phosphorylated to its active di- and triphosphate metabolites. Cytotoxicity with gemcitabine appears to be related to multiple effects on DNA replication, where gemcitabine triphosphate can serve as both an inhibitor and substrate for DNA synthesis. Gemcitabine diphosphate inhibits ribonucleotide reductase, producing decreases in cellular dNTP pool levels in a cell-specific manner. These two major characteristics of gemcitabine, reduction in cellular dNTP pools and incorporation into DNA, are features of other antimetabolites antitumor agents which also exhibit radiosensitizing properties. Based on these favorable metabolic characteristics and the clinical activity of gemcitabine in tumor types which are commonly treated with radiation, the ability of gemcitabine to enhance X-radiation induced cytotoxicity was evaluated. Gemcitabine has been shown to be a potent radiosensitizer in a variety of tumor cell lines, including HT-29 colorectal carcinoma, pancreatic cancer, breast, non-small cell lung and head and neck cancer cell lines. Gemcitabine was most effective as a radiosensitizer when administered at least 2 hours prior to irradiation. For most cell lines, radiosensitization was evident at non-cytotoxic concentrations. The extent of radiosensitization increased with both increasing gemcitabine concentration and duration of exposure. Radiosensitization did not require redistribution of cells into a more radiosensitive phase of the cell cycle. The major metabolic effects observed under radiosensitizing conditions were the accumulation of high levels of gemcitabine triphosphate, and a selective decrease in the cellular dATP pool. The pattern of dATP decrease paralleled the increase in radiosensitization, whereas the level of gemcitabine triphosphate was not associated with the enhanced sensitivity to radiation. Compared to other radiosensitizers, the advantage of gemcitabine is that is can induce radiosensitization at concentrations that are 1000 times lower than typical plasma levels obtained with this drug. These studies will be used as guidelines for developing clinical trials of gemcitabine with radiation[1].
References

[1].Gemcitabine and radiosensitization in human tumor cells. Invest New Drugs. 1996;14(3):257-63.


Solubility Data


Solubility (In Vitro) H2O :~125 mg/mL (~219.65 mM; with sonication)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7572 mL 8.7861 mL 17.5722 mL
5 mM 0.3514 mL 1.7572 mL 3.5144 mL
10 mM 0.1757 mL 0.8786 mL 1.7572 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.