Physicochemical Properties
| Molecular Formula | C15H10O2 |
| Molecular Weight | 222.24 |
| Exact Mass | 222.068 |
| CAS # | 525-82-6 |
| PubChem CID | 10680 |
| Appearance | White to off-white solid powder |
| Density | 1.2±0.1 g/cm3 |
| Boiling Point | 367.0±42.0 °C at 760 mmHg |
| Melting Point | 94-97 °C(lit.) |
| Flash Point | 171.1±21.4 °C |
| Vapour Pressure | 0.0±0.8 mmHg at 25°C |
| Index of Refraction | 1.635 |
| LogP | 3.56 |
| Hydrogen Bond Donor Count | 0 |
| Hydrogen Bond Acceptor Count | 2 |
| Rotatable Bond Count | 1 |
| Heavy Atom Count | 17 |
| Complexity | 326 |
| Defined Atom Stereocenter Count | 0 |
| InChi Key | VHBFFQKBGNRLFZ-UHFFFAOYSA-N |
| InChi Code | InChI=1S/C15H10O2/c16-13-10-15(11-6-2-1-3-7-11)17-14-9-5-4-8-12(13)14/h1-10H |
| Chemical Name | 2-phenylchromen-4-one |
| HS Tariff Code | 2934.99.9001 |
| Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: This product requires protection from light (avoid light exposure) during transportation and storage. |
| Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
| Additional Infomation |
Flavone is the simplest member of the class of flavones that consists of 4H-chromen-4-one bearing a phenyl substituent at position 2. It has a role as a metabolite and a nematicide. Flavone has been reported in Camellia sinensis, Anaphalis lactea, and other organisms with data available. Quercetin is a flavonoid that forms the "backbone" for many other flavonoids, including the citrus flavonoids rutin, hesperidin, naringin and tangeritin. In studies, quercetin is found to be the most active of the flavonoids, and many medicinal plants owe much of their activity to their high quercetin content. Quercetin has demonstrated significant anti-inflammatory activity because of direct inhibition of several initial processes of inflammation. For example, it inhibits both the manufacture and release of histamine and other allergic/inflammatory mediators. In addition, it exerts potent antioxidant activity and vitamin C-sparing action. |
Solubility Data
| Solubility (In Vitro) | DMSO :~100 mg/mL (~449.96 mM) |
| Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 4.55 mg/mL (20.47 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 45.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (11.25 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Solubility in Formulation 3: ≥ 2.5 mg/mL (11.25 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.  (Please use freshly prepared in vivo formulations for optimal results.) |
| Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
| 1 mM | 4.4996 mL | 22.4982 mL | 44.9964 mL | |
| 5 mM | 0.8999 mL | 4.4996 mL | 8.9993 mL | |
| 10 mM | 0.4500 mL | 2.2498 mL | 4.4996 mL |