PeptideDB

Antibacterial agent 141 2930013-56-0

Antibacterial agent 141 2930013-56-0

CAS No.: 2930013-56-0

Antibacterial agent 141 (Compound B14) has anti-bacterial effect against four plant pathogens: Xoo, Xac, Psa and Cmm, wi
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Antibacterial agent 141 (Compound B14) has anti-bacterial effect against four plant pathogens: Xoo, Xac, Psa and Cmm, with EC50 of 1.28 μM. Antibacterial agent 141 can inhibit the formation of cell membranes and change the permeability of cells.

Physicochemical Properties


CAS # 2930013-56-0
Appearance Typically exists as solid at room temperature
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro The antibacterial substance 141 considerably causes the Xoo bacteria's cell membrane to break [1]. In a concentration-dependent way, antibacterial agent 141 improves the permeability of bacterial membranes in Xoo bacteria [1]. The cell membrane surface of Xoo bacteria is destroyed by antibacterial agent 141 [1]. In Xoo bacteria, antibacterial agent 141 (3.2, 6.4 μM) dramatically lowers the expression of the ACC, ACP, and Fab family genes [1]. With increasing concentration, antibacterial agent 141 strongly inhibits the production of Xoo biofilm [1]. For HepG2 and HK-2 cells, antibacterial agent 141 exhibits minimal toxicity [1]. The growth of Xoo bacteria is strongly inhibited by antibacterial agent 141 (0.64-5.12 μM; 3-30 h) [1].
ln Vivo Antibacterial agent 141 (200 μg/mL; 7 days; single dosage) demonstrated 43.33% and 4.64% of its preventive and therapeutic effects against bacterial blight, respectively [1].
Cell Assay Real Time qPCR
Cell Types: Xoo bacteria
Tested Concentrations: 3.2, 6.4 μM
Incubation Duration:
Experimental Results: Dramatically decreased the expression of ACC, ACP and Fab family genes in Xoo bacteria.

Cell Viability Assay
Cell Types: Had a slight inhibitory effect on bacterial growth with the concentration of 0.64, 1.28, 2.56 μM. Inhibited the growth of bacteria more obviously when the drug concentration reached 5.12 μM.
References

[1]. Novel spiro[chromanone-2,4'-piperidine]-4-one derivatives as potential inhibitors of fatty acid synthesis in pathogens: Design, synthesis, and biological evaluation. Eur J Med Chem. 2023 Mar 15;250:115215.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)