PeptideDB

Amiodarone-d4 hydrochloride 1216715-80-8

Amiodarone-d4 hydrochloride 1216715-80-8

CAS No.: 1216715-80-8

Amiodarone-d4 ( HCl) is the deuterated form of AmiodaroneHCl. AmiodaroneHCl is a Class III antiarrhythmic agent that can
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Amiodarone-d4 ( HCl) is the deuterated form of Amiodarone HCl. Amiodarone HCl is a Class III antiarrhythmic agent that can inhibit wild-type IhERG potassium channels and their tail currents with IC50 of approximately 45 nM. Amiodarone HCl induces cell proliferation/growth and myofibroblast differentiation through ERK1/2 and p38 MAPK signaling in fibroblasts. Amiodarone HCl may be utilized in the study of supraventricular and ventricular arrhythmias.

Physicochemical Properties


Molecular Formula C25H26D4CLI2NO3
Molecular Weight 685.80
Exact Mass 685.025
CAS # 1216715-80-8
Related CAS # Amiodarone hydrochloride;19774-82-4;Amiodarone;1951-25-3
PubChem CID 45038158
Appearance White to off-white solid powder
Melting Point 148-152°C
LogP 7.738
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 4
Rotatable Bond Count 11
Heavy Atom Count 32
Complexity 547
Defined Atom Stereocenter Count 0
SMILES

[2H]C([2H])(C([2H])([2H])OC1=C(C=C(C=C1I)C(=O)C2=C(OC3=CC=CC=C32)CCCC)I)N(CC)CC.Cl

InChi Key ITPDYQOUSLNIHG-MMJSDMDPSA-N
InChi Code

InChI=1S/C25H29I2NO3.ClH/c1-4-7-11-22-23(18-10-8-9-12-21(18)31-22)24(29)17-15-19(26)25(20(27)16-17)30-14-13-28(5-2)6-3;/h8-10,12,15-16H,4-7,11,13-14H2,1-3H3;1H/i13D2,14D2;
Chemical Name

(2-butyl-1-benzofuran-3-yl)-[3,5-diiodo-4-[1,1,2,2-tetradeuterio-2-(diethylamino)ethoxy]phenyl]methanone;hydrochloride
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro Drug compounds have included stable heavy isotopes of carbon, hydrogen, and other elements, mostly as quantitative tracers while the drugs were being developed. Because deuteration may have an effect on a drug's pharmacokinetics and metabolic properties, it is a cause for concern [1].
References

[1]. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

[2]. Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking. Biochem Pharmacol. 2016 Aug 1;113:24-35.

[3]. Amiodarone induces cell proliferation and myofibroblast differentiation via ERK1/2 and p38 MAPK signaling in fibroblasts. Biomed Pharmacother. 2019 Jul;115:108889.

[4]. Long-term amiodarone administration remodels expression of ion channel transcripts in the mouse heart. Circulation. 2004 Nov 9;110(19):3028-35.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4582 mL 7.2908 mL 14.5815 mL
5 mM 0.2916 mL 1.4582 mL 2.9163 mL
10 mM 0.1458 mL 0.7291 mL 1.4582 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.