PeptideDB

Acetyl Coenzyme A trisodium (acetyl-CoA trisodium) 102029-73-2

Acetyl Coenzyme A trisodium (acetyl-CoA trisodium) 102029-73-2

CAS No.: 102029-73-2

Acetyl-coenzyme A (Acetyl-CoA) trisodium is a membrane-impermeable (penetrable) central metabolic intermediate that part
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Acetyl-coenzyme A (Acetyl-CoA) trisodium is a membrane-impermeable (penetrable) central metabolic intermediate that participates in the TCA cycle and oxidative phosphorylation metabolic processes. Acetyl-coenzyme A trisodium completes the post-translational acetylation reaction of proteins by donating (sole donor) acetyl groups to target amino acid (AA) residues, thus regulating various cellular mechanisms. Acetyl Coenzyme A trisodium is also a key precursor in lipid synthesis.

Physicochemical Properties


Molecular Formula C23H35N7NA3O17P3S
Molecular Weight 875.52
Exact Mass 809.125
CAS # 102029-73-2
Related CAS # Acetyl coenzyme A lithium;32140-51-5;Acetyl coenzyme A;72-89-9
PubChem CID 6302
Appearance White to off-white solid powder
Density 1.9±0.1 g/cm3
Index of Refraction 1.718
LogP -3.89
Hydrogen Bond Donor Count 9
Hydrogen Bond Acceptor Count 22
Rotatable Bond Count 20
Heavy Atom Count 51
Complexity 1380
Defined Atom Stereocenter Count 4
SMILES

O[C@@H]1[C@@H]([C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C=NC2C(=NC=NC1=2)N)OP(O)(O)=O.[Na+].[Na+].[Na+]

InChi Key ZSLZBFCDCINBPY-KMYLAXNMSA-N
InChi Code

InChI=1S/C23H38N7O17P3S/c1-12(31)51-7-6-25-14(32)4-5-26-21(35)18(34)23(2,3)9-44-50(41,42)47-49(39,40)43-8-13-17(46-48(36,37)38)16(33)22(45-13)30-11-29-15-19(24)27-10-28-20(15)30/h10-11,13,16-18,22,33-34H,4-9H2,1-3H3,(H,25,32)(H,26,35)(H,39,40)(H,41,42)(H2,24,27,28)(H2,36,37,38)/t13-,16-,17-,18?,22-/m1/s1
Chemical Name

S-[2-[3-[[4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] ethanethioate
Synonyms

Acetyl coenzyme A sodium salt; 102029-73-2; Coenzyme A, S-acetate, trisodium salt (9CI); Acetyl Coenzyme A Trisodium Salt; Acetyl-CoA sodium; XGCDESRMLMCTPI-UHFFFAOYSA-N;
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Human Endogenous Metabolite
ln Vitro In famine-starved U2OS cells, acetyl coenzyme A trisodium promotes cytoplasmic protein acetylation while decreasing starvation-induced autophagic fluxes. (U2OS cells that express GFP-LC3 steadily are microinjected with Acetyl Coenzyme A Trisodium; they are then cultured in the absence of nutrients with 100 nM BafA1 and fixed after three hours)[2].
ln Vivo In a mouse cardiac pressure overload model, acetyl coenzyme A trisodium attenuates pressure overload-induced cardiomyopathy via inhibiting maladaptive autophagy[2][3]. Mice denied food (but allowed unlimited access to water) for a whole day have markedly lower levels of total Acetyl coenzyme A trisodium in the heart and muscles, which correlates with lower levels of protein acetylation. Nevertheless, the identical experimental setups actually raise hepatic levels of protein acetylation and Acetyl coenzyme A trisodium while having no discernible impact on brain concentrations of the enzyme[4].
References

[1]. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014 Aug;15(8):536-50.

[2]. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell. 2014 Mar 6;53(5):710-25.

[3]. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007 Jul;117(7):1782-93.

[4]. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 2015 Jun 2;21(6):805-21.

Additional Infomation Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.
Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation, implicating it in many biological processes through the regulation of protein interactions, activity and localization. In addition, proteins are frequently modified by other types of acylations, such as formylation, butyrylation, propionylation, succinylation, malonylation, myristoylation, glutarylation and crotonylation. The intricate link between lysine acylation and cellular metabolism has been clarified by the occurrence of several such metabolite-sensitive acylations and their selective removal by sirtuin deacylases. These emerging findings point to new functions for different lysine acylations and deacylating enzymes and also highlight the mechanisms by which acetylation regulates various cellular processes.[1]
Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.[2]
Cardiac hypertrophy is a major predictor of heart failure and a prevalent disorder with high mortality. Little is known, however, regarding mechanisms governing the transition from stable cardiac hypertrophy to decompensated heart failure. Here, we tested the role of autophagy, a conserved pathway mediating bulk degradation of long-lived proteins and cellular organelles that can lead to cell death. To quantify autophagic activity, we engineered a line of "autophagy reporter" mice and confirmed that cardiomyocyte autophagy can be induced by short-term nutrient deprivation in vivo. Pressure overload induced by aortic banding induced heart failure and greatly increased cardiac autophagy. Load-induced autophagic activity peaked at 48 hours and remained significantly elevated for at least 3 weeks. In addition, autophagic activity was not spatially homogeneous but rather was seen at particularly high levels in basal septum. Heterozygous disruption of the gene coding for Beclin 1, a protein required for early autophagosome formation, decreased cardiomyocyte autophagy and diminished pathological remodeling induced by severe pressure stress. Conversely, Beclin 1 overexpression heightened autophagic activity and accentuated pathological remodeling. Taken together, these findings implicate autophagy in the pathogenesis of load-induced heart failure and suggest it may be a target for novel therapeutic intervention.[3]
Acetyl-coenzyme A (acetyl-CoA) is a central metabolic intermediate. The abundance of acetyl-CoA in distinct subcellular compartments reflects the general energetic state of the cell. Moreover, acetyl-CoA concentrations influence the activity or specificity of multiple enzymes, either in an allosteric manner or by altering substrate availability. Finally, by influencing the acetylation profile of several proteins, including histones, acetyl-CoA controls key cellular processes, including energy metabolism, mitosis, and autophagy, both directly and via the epigenetic regulation of gene expression. Thus, acetyl-CoA determines the balance between cellular catabolism and anabolism by simultaneously operating as a metabolic intermediate and as a second messenger.[4]

Solubility Data


Solubility (In Vitro) H2O : 83.33 mg/mL (95.18 mM)
DMSO : < 1 mg/mL
Solubility (In Vivo) Solubility in Formulation 1: 100 mg/mL (114.22 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.1422 mL 5.7109 mL 11.4218 mL
5 mM 0.2284 mL 1.1422 mL 2.2844 mL
10 mM 0.1142 mL 0.5711 mL 1.1422 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.