Physicochemical Properties
| Molecular Formula | C40H49N7O7 |
| Molecular Weight | 739.86 |
| Exact Mass | 853.362 |
| CAS # | 327177-34-4 |
| Related CAS # | tcY-NH2 TFA;1262750-73-1 |
| PubChem CID | 11479675 |
| Appearance | Typically exists as solid at room temperature |
| LogP | 4.602 |
| Hydrogen Bond Donor Count | 7 |
| Hydrogen Bond Acceptor Count | 8 |
| Rotatable Bond Count | 19 |
| Heavy Atom Count | 54 |
| Complexity | 1270 |
| Defined Atom Stereocenter Count | 4 |
| SMILES | O=C(NC(C(N1CCCC1C(NCC(NC(C(NC(C(N)=O)CC1C=CC=CC=1)=O)CCCCN)=O)=O)=O)CC1C=CC(O)=CC=1)/C=C/C1C=CC=CC=1 |
| InChi Key | XKRAKQXQVIGYQC-PHOSSJRVSA-N |
| InChi Code | InChI=1S/C40H49N7O7/c41-22-8-7-14-31(38(52)46-32(37(42)51)24-28-12-5-2-6-13-28)44-36(50)26-43-39(53)34-15-9-23-47(34)40(54)33(25-29-16-19-30(48)20-17-29)45-35(49)21-18-27-10-3-1-4-11-27/h1-6,10-13,16-21,31-34,48H,7-9,14-15,22-26,41H2,(H2,42,51)(H,43,53)(H,44,50)(H,45,49)(H,46,52)/b21-18+/t31-,32-,33-,34-/m0/s1 |
| Chemical Name | (2S)-N-[2-[[(2S)-6-amino-1-[[(2S)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-1-oxohexan-2-yl]amino]-2-oxoethyl]-1-[(2S)-3-(4-hydroxyphenyl)-2-[[(E)-3-phenylprop-2-enoyl]amino]propanoyl]pyrrolidine-2-carboxamide |
| HS Tariff Code | 2934.99.9001 |
| Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
| ln Vitro | With an IC50 value of 95 μM, tcY-NH2 (0-500 μM) inhibits the aggregation of platelets (obtained from male albino Sprague-Dawley rats) induced by AYPGKF-NH2 (10 μM). With IC50 values of 64 μM for aorta relaxation (RA) and 1 μM for gastric contraction (LM), tcY-NH2 potently activates these processes[1]. Platelet aggregation caused by thrombin or AY-NH2 induces endostatin release, which is inhibited by tcY-NH2 (Tc-YPGKF-NH2, 400 μM, 5 min)[2]. In an isolated heart model, tcY-NH2 (5 μM, 15 min) increases recovery of ventricular function by 26% and decreases infarct size (IS) by 51%[5]. |
| ln Vivo | In the Brain Death (BD) rat model, tcY-NH2 (tail vein injection, 0.6 mg/kg for a single dosage) reduces liver injury as seen by improved histomorphology and decreased blood ALT/AST levels[3]. In the draining lymph nodes of burn damage mice model, tcY-NH2 (intraperitoneal injection, 0.6 mg/kg for a single dosage) promotes posttraumatic activation of CD4+ Tregs[4]. In experimental inflammation in mice, tcY-NH2 (intrapleural injection, 40 ng/kg for a single dose) suppresses neutrophil recruitment[6]. |
| Animal Protocol |
Animal/Disease Models: Brain death (BD) rat model[3] Doses: 0.6 mg/kg for a single dose Route of Administration: Tail vein injection for a single dose Experimental Results: decreased blood platelet activation and hepatic platelet accumulation. Attenuated the inflammatory response and apoptosis in the livers. Inhibited the activation of NF-κB and MAPK pathways induced by Brain death (BD). Animal/Disease Models: Burn injury model of C57BL/6 N mice[4] Doses: 0.6 mg/kg for a single dose Route of Administration: intraperitoneal (ip) injection Experimental Results: Increased expression and phosphorylation of PKC-θ in the presence of platelets, without affecting early posttraumatic hemostasis. Animal/Disease Models: BALB/c mice[6] Doses: 40 ng/kg for a single dose Route of Administration: Intrapleural injection Experimental Results: Abolished the number of rolling and adhering neutrophils on the vessel wall. Inhibited CXCL8- and Cg-induced neutrophil migration into the pleural cavity of mice. |
| References |
[1]. Proteinase-activated receptor-4: evaluation of tethered ligand-derived peptides as probes for receptor function and as inflammatory agonists in vivo. Br J Pharmacol. 2004 Oct;143(4):443-54. [2]. Thrombin-induced platelet endostatin release is blocked by a proteinase activated receptor-4 (PAR4) antagonist. Br J Pharmacol. 2001 Oct;134(4):701-4. [3]. Blocking protease-activated receptor 4 alleviates liver injury induced by brain death. Biochem Biophys Res Commun. 2022 Mar 5;595:47-53. [4]. Platelets differentially modulate CD4 + Treg activation via GPIIa/IIIb-, fibrinogen-, and PAR4-dependent pathways. Immunol Res. 2022 Apr;70(2):185-196. [5]. Inhibiting protease-activated receptor 4 limits myocardial ischemia/reperfusion injury in rat hearts by unmasking adenosine signaling. J Pharmacol Exp Ther. 2008 Mar;324(3):1045-54. [6]. Blockade of proteinase-activated receptor 4 inhibits neutrophil recruitment in experimental inflammation in mice. Inflamm Res. 2014 Nov;63(11):935-41. |
Solubility Data
| Solubility (In Vitro) | May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples |
| Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
| Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
| 1 mM | 1.3516 mL | 6.7580 mL | 13.5161 mL | |
| 5 mM | 0.2703 mL | 1.3516 mL | 2.7032 mL | |
| 10 mM | 0.1352 mL | 0.6758 mL | 1.3516 mL |