PeptideDB

p-Cresyl sulfate (p-methyl sulfate; p-Tolyl sulfate) 3233-58-7

p-Cresyl sulfate (p-methyl sulfate; p-Tolyl sulfate) 3233-58-7

CAS No.: 3233-58-7

p-Cresyl Sulfate is a major uremic toxin derived from the metabolites of tyrosine and phenylalanine in the liver and is
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

p-Cresyl Sulfate is a major uremic toxin derived from the metabolites of tyrosine and phenylalanine in the liver and is present in the blood of patients with chronic kidney disease (CKD).

Physicochemical Properties


Molecular Formula C7H8O4S
Molecular Weight 188.20
Exact Mass 188.014
CAS # 3233-58-7
Related CAS # p-Cresyl sulfate potassium;91978-69-7
PubChem CID 4615423
Appearance White to off-white solid powder
LogP 2.257
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 4
Rotatable Bond Count 2
Heavy Atom Count 12
Complexity 220
Defined Atom Stereocenter Count 0
InChi Key WGNAKZGUSRVWRH-UHFFFAOYSA-N
InChi Code

InChI=1S/C7H8O4S/c1-6-2-4-7(5-3-6)11-12(8,9)10/h2-5H,1H3,(H,8,9,10)
Chemical Name

(4-methylphenyl) hydrogen sulfate
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Microbial Metabolite Human Endogenous Metabolite
ADME/Pharmacokinetics Metabolism / Metabolites
Uremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces.
Toxicity/Toxicokinetics Toxicity Summary
Uremic toxins such as p-Cresol sulfate are actively transported into the kidneys via organic ion transporters (especially OAT3). Increased levels of uremic toxins can stimulate the production of reactive oxygen species. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (A7868). Reactive oxygen species can induce several different DNA methyltransferases (DNMTs) which are involved in the silencing of a protein known as KLOTHO. KLOTHO has been identified as having important roles in anti-aging, mineral metabolism, and vitamin D metabolism. A number of studies have indicated that KLOTHO mRNA and protein levels are reduced during acute or chronic kidney diseases in response to high local levels of reactive oxygen species (A7869).
References

[1]. Peng YS, Syu JP, Wang SD, Pan PC, Kung HN. BSA-bounded p-cresyl sulfate potentiates the malignancy of bladder carcinoma by triggering cell migration and EMT through the ROS/Src/FAK signaling pathway. Cell Biol Toxicol. 2020;36(4):287-300.

[2]. Gryp T, Vanholder R, Vaneechoutte M, Glorieux G. p-Cresyl Sulfate. Toxins (Basel). 2017;9(2):52. Published 2017 Jan 29.

Additional Infomation P-cresol sulfate is an aryl sulfate that is p-cresol in which the phenolic hydrogen has been replaced by a sulfo group. It has a role as a human metabolite, a uremic toxin and a gut flora metabolite. It is functionally related to a p-cresol. It is a conjugate acid of a p-cresol sulfate(1-).
p-Cresol sulfate is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.
p-Cresol sulfate is a microbial metabolite that is found in urine and likely derives from secondary metabolism of p-cresol. It appears to be elevated in the urine of individuals with progressive multiple sclerosis p-Cresol sulfate is the major component of urinary MBPLM (myelin basic protein-like material). p-Cresol sulfate is a small protein-bound molecule that is poorly cleared with dialysis and is often considered to be a uremic toxin. Uremic toxins include low-molecular-weight compounds such as indoxyl sulfate, p-cresol sulfate, 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid and asymmetric dimethylarginine It has also been linked to cardiovascular disease and oxidative injury. (A3297, A3298).

Solubility Data


Solubility (In Vitro) DMSO :~250 mg/mL (~1328.37 mM)
Solubility (In Vivo) Solubility in Formulation 1: ≥ 2.08 mg/mL (11.05 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (11.05 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 3: ≥ 2.08 mg/mL (11.05 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.3135 mL 26.5675 mL 53.1350 mL
5 mM 1.0627 mL 5.3135 mL 10.6270 mL
10 mM 0.5313 mL 2.6567 mL 5.3135 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.