PeptideDB

γ-Amanitin 21150-23-2

γ-Amanitin 21150-23-2

CAS No.: 21150-23-2

γ-Amanitin, an ADC cytotoxin, was extracted from the mushroom. γ-Amanitin interferes with mRNA synthesis by inhibiting
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

γ-Amanitin, an ADC cytotoxin, was extracted from the mushroom. γ-Amanitin interferes with mRNA synthesis by inhibiting RNA polymerase II. The effects of γ-amanitin are comparable to those of α- and β-amanitin.

Physicochemical Properties


Molecular Formula C39H54N10O13S
Molecular Weight 902.970267772675
Exact Mass 902.359
CAS # 21150-23-2
Related CAS # α-Amanitin;23109-05-9
PubChem CID 125121811
Appearance Colorless to light yellow liquid
Density 1.5±0.1 g/cm3
Boiling Point 1566.5±65.0 °C at 760 mmHg
Flash Point 901.2±34.3 °C
Vapour Pressure 0.0±0.3 mmHg at 25°C
Index of Refraction 1.684
LogP -7.98
Hydrogen Bond Donor Count 12
Hydrogen Bond Acceptor Count 14
Rotatable Bond Count 6
Heavy Atom Count 63
Complexity 1820
Defined Atom Stereocenter Count 11
SMILES

[S@]1(C[C@H]2C(N[C@@H](CC(N)=O)C(N3C[C@@H](C[C@H]3C(N[C@H](C(N[C@H](C(NCC(N[C@H](C(NCC(N2)=O)=O)[C@@H](C)CC)=O)=O)CC2C3C=CC(=CC=3NC1=2)O)=O)[C@@H](C)[C@H](C)O)=O)O)=O)=O)=O

InChi Key WVHGJJRMKGDTEC-ZUROAWGWSA-N
InChi Code

InChI=1S/C39H54N10O13S/c1-5-16(2)31-36(59)42-12-29(54)43-26-15-63(62)38-22(21-7-6-19(51)8-23(21)46-38)10-24(33(56)41-13-30(55)47-31)44-37(60)32(17(3)18(4)50)48-35(58)27-9-20(52)14-49(27)39(61)25(11-28(40)53)45-34(26)57/h6-8,16-18,20,24-27,31-32,46,50-52H,5,9-15H2,1-4H3,(H2,40,53)(H,41,56)(H,42,59)(H,43,54)(H,44,60)(H,45,57)(H,47,55)(H,48,58)/t16-,17-,18-,20+,24-,25-,26-,27-,31-,32-,63?/m0/s1 Create Date: 2012-08-08
Chemical Name

2-[(1R,4S,8R,10S,13S,16S,27R,34S)-34-[(2S)-butan-2-yl]-8,22-dihydroxy-13-[(2R,3S)-3-hydroxybutan-2-yl]-2,5,11,14,27,30,33,36,39-nonaoxo-27λ4-thia-3,6,12,15,25,29,32,35,38-nonazapentacyclo[14.12.11.06,10.018,26.019,24]nonatriaconta-18(26),19(24),20,22-tetraen-4-yl]acetamide
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Traditional Cytotoxic Agents
Toxicity/Toxicokinetics Interactions
...PHARMACOLOGICAL AGENTS.../HAVE/ BEEN REPORTED TO PROTECT MICE AGAINST LETHAL DOSES OF PHALLOTOXINS & AMATOXINS /INCLUDING THE AMANITINS/. THE LIST INCLUDES HIGH DOSES OF PENICILLIN, CHLORAMPHENICOL, PHENYLBUTAZONE, & MANY OTHERS... NONE OF THESE ANTIDOTES HAS RECEIVED AN ADEQUATE CLINICAL TRIAL & SO NONE CAN BE RECOMMENDED TODAY. /AMANITINS/
References

[1]. Gamma-Amanitin

Additional Infomation Amatoxin has been reported in Amanita phalloides, Galerina marginata, and other organisms with data available.
Mechanism of Action
/IN COMPARISON WITH THE PHALLOTOXINS/...THE LONG DELAYED HEPATOTOXIC RESPONSE SEEN IN HUMAN POISONINGS...IS MORE LIKELY DUE TO...ALPHA-, BETA-, & GAMMA-AMANITIN, ESPECIALLY THE ALPHA COMPONENT. THESE SO-CALLED AMATOXINS...ARE MORE TOXIC THAN THE PHALLOTOXINS, &, UNLIKE THE LATTER, THEY DAMAGE THE NUCLEOLUS & LATER THE NUCLEUS OF LIVER CELLS.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.1075 mL 5.5373 mL 11.0746 mL
5 mM 0.2215 mL 1.1075 mL 2.2149 mL
10 mM 0.1107 mL 0.5537 mL 1.1075 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.