PeptideDB

β-Hydroxypropiovanillone 2196-18-1

β-Hydroxypropiovanillone 2196-18-1

CAS No.: 2196-18-1

β-Hydroxypropiovanillone is a natural compound that has a significant concentration-dependent inhibitory activity again
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

β-Hydroxypropiovanillone is a natural compound that has a significant concentration-dependent inhibitory activity against α-glucosidase (IC50=257.8 μg/mL).

Physicochemical Properties


Molecular Formula C10H12O4
Molecular Weight 196.20
Exact Mass 196.073
CAS # 2196-18-1
PubChem CID 75142
Appearance Light yellow to brown solid powder
Density 1.2±0.1 g/cm3
Boiling Point 408.2±35.0 °C at 760 mmHg
Flash Point 165.4±19.4 °C
Vapour Pressure 0.0±1.0 mmHg at 25°C
Index of Refraction 1.561
LogP 0.69
Hydrogen Bond Donor Count 2
Hydrogen Bond Acceptor Count 4
Rotatable Bond Count 4
Heavy Atom Count 14
Complexity 193
Defined Atom Stereocenter Count 0
InChi Key NXCPMSUBVRGTSE-UHFFFAOYSA-N
InChi Code

InChI=1S/C10H12O4/c1-14-10-6-7(2-3-9(10)13)8(12)4-5-11/h2-3,6,11,13H,4-5H2,1H3
Chemical Name

3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-1-one
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets IC50: 257.8 μg/mL (α-glucosidase)[1]
ln Vitro β-hydroxypropiovanillone and its analogues can be produced by cleaving arylglycerol-β-aryl ether with zinc after lignin is oxidized chemoselectively using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone/tert-butyl nitrite/O2[2]. β-hydroxypropiovanillone (HPV) is oxidized by vanilloyl acetaldehyde (VAL) to vanilloyl acetic acid (VAA) in SYK-6 cells. After coenzyme A activated the resultant VAA, it was further transformed into vanillate[3].
References

[1]. Dihydrochalcone-derived polyphenols from tea crab apple (Malus hupehensis) and their inhibitory effects on α-glucosidase in vitro. Food Funct. 2019;10(5):2881-2887.

[2]. Bacterial Catabolism of β-Hydroxypropiovanillone and β-Hydroxypropiosyringone Produced in the Reductive Cleavage of Arylglycerol-β-Aryl Ether in Lignin. Appl Environ Microbiol. 2018;84(7):e02670-17. Published 2018 Mar 19.

[3]. Discovery of novel enzyme genes involved in the conversion of an arylglycerol-β-aryl ether metabolite and their use in generating a metabolic pathway for lignin valorization. Metab Eng. 2019;55:258-267.

Additional Infomation beta-Hydroxypropiovanillone has been reported in Camellia sinensis, Crepis mollis, and other organisms with data available.
See also: Acai fruit pulp (part of).

Solubility Data


Solubility (In Vitro) DMSO: 100 mg/mL (509.68 mM)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.0968 mL 25.4842 mL 50.9684 mL
5 mM 1.0194 mL 5.0968 mL 10.1937 mL
10 mM 0.5097 mL 2.5484 mL 5.0968 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.