PeptideDB

Voriconazole-d3 (UK-109496-d3) 1217661-14-7

Voriconazole-d3 (UK-109496-d3) 1217661-14-7

CAS No.: 1217661-14-7

Voriconazole-d3 is the deuterium labelled form of Voriconazole. Voriconazole (UK-109496) is a second-generation broad-sp
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Voriconazole-d3 is the deuterium labelled form of Voriconazole. Voriconazole (UK-109496) is a second-generation broad-spectrum triazole antifungal compound that can inhibit fungal ergosterol biosynthesis. Voriconazole exerts its antifungal activity by inhibiting the demethylation of 14-alpha-lanosterol mediated by fungal cytochrome P450 enzymes.

Physicochemical Properties


Molecular Formula C16H11D3F3N5O
Molecular Weight 352.33
Exact Mass 352.133
CAS # 1217661-14-7
Related CAS # Voriconazole;137234-62-9
PubChem CID 46783259
Appearance White to off-white solid powder
Density 1.4±0.1 g/cm3
Boiling Point 508.6±60.0 °C at 760 mmHg
Melting Point 115-120°C
Flash Point 261.4±32.9 °C
Vapour Pressure 0.0±1.4 mmHg at 25°C
Index of Refraction 1.617
LogP 0.93
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 8
Rotatable Bond Count 5
Heavy Atom Count 25
Complexity 448
Defined Atom Stereocenter Count 2
SMILES

[2H]C([2H])([2H])[C@@H](C1=NC=NC=C1F)[C@](CN2C=NC=N2)(C3=C(C=C(C=C3)F)F)O

InChi Key BCEHBSKCWLPMDN-QLWAGJNOSA-N
InChi Code

InChI=1S/C16H14F3N5O/c1-10(15-14(19)5-20-7-22-15)16(25,6-24-9-21-8-23-24)12-3-2-11(17)4-13(12)18/h2-5,7-10,25H,6H2,1H3/t10-,16+/m0/s1/i1D3
Chemical Name

(2R,3S)-4,4,4-trideuterio-2-(2,4-difluorophenyl)-3-(5-fluoropyrimidin-4-yl)-1-(1,2,4-triazol-1-yl)butan-2-ol
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro Drug compounds have included stable heavy isotopes of carbon, hydrogen, and other elements, mostly as quantitative tracers while the drugs were being developed. Because deuteration may have an effect on a drug's pharmacokinetics and metabolic properties, it is a cause for concern [1].
References

[1]. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

[2]. Nickie D Greer. Voriconazole: the newest triazole antifungal agent.Proc (Bayl Univ Med Cent). 2003 Apr;16(2):241-8.

[3]. Voriconazole : a review of its use in the management of invasive fungal infections.Drugs. 2007;67(2):269-98.

[4]. Efficacy of voriconazole in treatment of murine pulmonary blastomycosis.Antimicrob Agents Chemother. 2001 Feb;45(2):601-4.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8382 mL 14.1912 mL 28.3825 mL
5 mM 0.5676 mL 2.8382 mL 5.6765 mL
10 mM 0.2838 mL 1.4191 mL 2.8382 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.