PeptideDB

Trimetazidine-d8 dihydrochloride (trimetazidine d8 dihydrochloride) 1219795-37-5

Trimetazidine-d8 dihydrochloride (trimetazidine d8 dihydrochloride) 1219795-37-5

CAS No.: 1219795-37-5

Trimetazidine-d8 (di-HCl) is the deuterated form of Trimetazidine di-HCl. Trimetazidine di-HCl is a selective long-chain
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Trimetazidine-d8 (di-HCl) is the deuterated form of Trimetazidine di-HCl. Trimetazidine di-HCl is a selective long-chain 3-ketoyl coenzyme A thiolase inhibitor (antagonist) with IC50 of 75 nM that can inhibit the β-oxidation of free fatty acids. Trimetazidine di-HCl is a potent antianginal agent and a cytoprotective agent with antioxidant, anti-inflammatory, antinociceptive and gastroprotective effects. Trimetazidine di-HCl induces autophagy and is also a HADHA inhibitor.

Physicochemical Properties


Molecular Formula C14H23CLN2O3
Molecular Weight 302.797023057938
Exact Mass 346.166
CAS # 1219795-37-5
Related CAS # Trimetazidine dihydrochloride;13171-25-0
PubChem CID 76973089
Appearance White to off-white solid powder
Hydrogen Bond Donor Count 3
Hydrogen Bond Acceptor Count 5
Rotatable Bond Count 5
Heavy Atom Count 21
Complexity 259
Defined Atom Stereocenter Count 0
SMILES

C(N1C([H])([H])C([H])([H])NC([H])([H])C1([H])[H])C1C=CC(OC)=C(OC)C=1OC.Cl

InChi Key VYFLPFGUVGMBEP-IKGFOUCPSA-N
InChi Code

InChI=1S/C14H22N2O3.2ClH/c1-17-12-5-4-11(13(18-2)14(12)19-3)10-16-8-6-15-7-9-16;;/h4-5,15H,6-10H2,1-3H3;2*1H/i6D2,7D2,8D2,9D2;;
Chemical Name

2,2,3,3,5,5,6,6-octadeuterio-1-[(2,3,4-trimethoxyphenyl)methyl]piperazine;dihydrochloride
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro Drug compounds have included stable heavy isotopes of carbon, hydrogen, and other elements, mostly as quantitative tracers while the drugs were being developed. Because deuteration may have an effect on a drug's pharmacokinetics and metabolic properties, it is a cause for concern [1].
References

[1]. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

[2]. Protective effects of trimetazidine against vascular endothelial cell injury induced by oxidation. Journal of Geriatric Cardiology, December 2008 , Vol 5 No 4.

[3]. Defining the role of trimetazidine in the treatment of cardiovascular disorders: some insights on its role in heart failure and peripheral artery disease. Drugs. 2014 Jun;74(9):971-80.

[4]. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000 Mar 17;86(5):580-8.

[5]. Inhibition of Fatty Acid Oxidation Modulates Immunosuppressive Functions of Myeloid-Derived Suppressor Cells and Enhances Cancer Therapies. Cancer Immunol Res. 2015 Nov;3(11):1236-47.

[6]. Trimetazidine exerts protection against increasing current electroshock seizure test in mice. Seizure. 2010 Jun;19(5):300-2.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.3025 mL 16.5125 mL 33.0251 mL
5 mM 0.6605 mL 3.3025 mL 6.6050 mL
10 mM 0.3303 mL 1.6513 mL 3.3025 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.