PeptideDB

Trihydroxycholestanoic acid (Coprocholic acid) 547-98-8

Trihydroxycholestanoic acid (Coprocholic acid) 547-98-8

CAS No.: 547-98-8

Trihydroxycholestanoic acid is an endogenously produced metabolite present in the blood and may be utilized to study Zel
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Trihydroxycholestanoic acid is an endogenously produced metabolite present in the blood and may be utilized to study Zellweger syndrome, Refsum disease, D bifunctional protein deficiency and infantile Refsum disease.

Physicochemical Properties


Molecular Formula C27H46O5
Molecular Weight 450.65
Exact Mass 450.335
CAS # 547-98-8
Related CAS # Trihydroxycholestanoic acid-d3;338976-79-7
PubChem CID 122312
Appearance White to off-white solid powder
LogP 4.474
Hydrogen Bond Donor Count 4
Hydrogen Bond Acceptor Count 5
Rotatable Bond Count 6
Heavy Atom Count 32
Complexity 696
Defined Atom Stereocenter Count 11
SMILES

C[C@H](CCCC(C)C(=O)O)[C@H]1CC[C@@H]2[C@@]1([C@H](C[C@H]3[C@H]2[C@@H](C[C@H]4[C@@]3(CC[C@H](C4)O)C)O)O)C

InChi Key CNWPIIOQKZNXBB-VCVMUKOKSA-N
InChi Code

InChI=1S/C27H46O5/c1-15(6-5-7-16(2)25(31)32)19-8-9-20-24-21(14-23(30)27(19,20)4)26(3)11-10-18(28)12-17(26)13-22(24)29/h15-24,28-30H,5-14H2,1-4H3,(H,31,32)/t15-,16?,17+,18-,19-,20+,21+,22-,23+,24+,26+,27-/m1/s1
Chemical Name

(6R)-2-methyl-6-[(3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]heptanoic acid
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro Endogenous metabolites are those that the Kyoto Encyclopedia of Genes and Genomes has identified as products or substrates of the approximately 1900 metabolic enzymes that are encoded in human genome. Numerous of these metabolites have been shown to have harmful effects, as evidenced by the body of literature [1].
References

[1]. Endogenous toxic metabolites and implications in cancer therapy. Oncogene. 2020 Aug;39(35):5709-5720.

[2]. Clinical approach to inherited peroxisomal disorders: a series of 27 patients. Ann Neurol. 1998 Nov;44(5):720-30.

[3]. Infantile Refsum's disease: biochemical findings suggesting multiple peroxisomal dysfunction. J Inherit Metab Dis. 1986;9(2):169-74.

[4]. Characteristic acylcarnitine profiles in inherited defects of peroxisome biogenesis: a novel tool for screening diagnosis using tandem mass spectrometry. Pediatr Res. 2003 Jun;53(6):1013-8.

Additional Infomation 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-oic acid is a steroid acid that is 5beta-cholestan-26-oic acid which is substituted by hydroxy groups as the 3alpha, 7alpha, and 12alpha positions. It has a role as a human metabolite. It is a hydroxy monocarboxylic acid, a 3alpha-hydroxy steroid, a 7alpha-hydroxy steroid, a 12alpha-hydroxy steroid and a steroid acid. It is a conjugate acid of a 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-oate(1-). It derives from a hydride of a 5beta-cholestane.
3Alpha,7Alpha,12Alpha-trihydroxy-5Beta-cholestan-26-oic acid has been reported in Homo sapiens and Brassica napus with data available.
See also: 3,7,12-Trihydroxycoprostanic acid (annotation moved to).

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2190 mL 11.0951 mL 22.1902 mL
5 mM 0.4438 mL 2.2190 mL 4.4380 mL
10 mM 0.2219 mL 1.1095 mL 2.2190 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.