PeptideDB

TP-1287 2044686-42-0

TP-1287 2044686-42-0

CAS No.: 2044686-42-0

TP-1287 is the prodrug of Alvocidib, an orally bioactive CDK9 inhibitor.
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

TP-1287 is the prodrug of Alvocidib, an orally bioactive CDK9 inhibitor.

Physicochemical Properties


Exact Mass 481.07
Elemental Analysis C, 52.35; H, 4.39; Cl, 7.36; N, 2.91; O, 26.56; P, 6.43
CAS # 2044686-42-0
Appearance Light yellow to yellow solid powder
InChi Key YRNFLVUMZIRYKY-BLLLJJGKSA-N
InChi Code

InChI=1S/C21H21ClNO8P/c1-23-7-6-12(16(26)10-23)19-18(31-32(27,28)29)9-15(25)20-14(24)8-17(30-21(19)20)11-4-2-3-5-13(11)22/h2-5,8-9,12,16,25-26H,6-7,10H2,1H3,(H2,27,28,29)/t12-,16+/m0/s1
Chemical Name

2-(2-chlorophenyl)-5-hydroxy-8-((3S,4R)-3-hydroxy-1-methylpiperidin-4-yl)-4-oxo-4H-chromen-7-yl dihydrogen phosphate
Synonyms

TP 1287; TP-1287; TP1287; alvocidib prodrug;
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets CDK9
ln Vitro TP-1287 inhibits RNA polymerase II-mediated CDK9-mediated MCL-1 expression [1].
ln Vivo In multiple myeloma models, TP-1287 (2.5–15 mg/kg; oral) suppresses the growth of tumors [1]. After oral dosing, TP-1287 is effectively metabolized in vivo to the parent drug and is highly soluble over a wider pH range than Alvocidib (HY-10005) [2].
Animal Protocol Animal/Disease Models: RPMI-8226 xenograft model for multiple myeloma[1]
Doses: 2.5, 7.5, and 15 mg/kg
Route of Administration: Oral
Experimental Results: Achieved tumor growth Inhibition (%TGI) of 56.0, 76.6, and 93.9% at doses of 2.5, 7.5, and 15 mg/kg, respectively.
References

[1]. The Oral CDK9 Inhibitor, TP-1287, Is Active in Non-Clinical Models of Multiple Myeloma. Blood, 2018, 132: 3269.

[2]. TP-1287, an oral prodrug of the cyclin-dependent kinase-9 inhibitor alvocidib. Cancer Research, 2017, 77(13_Supplement): 5133-5133.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)