PeptideDB

TD-139 1450824-22-2

TD-139 1450824-22-2

CAS No.: 1450824-22-2

TD-139 is a novel and potent galectin-3 inhibitor with the potential for the treatment of idiopathic pulmonary fibrosis
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

TD-139 is a novel and potent galectin-3 inhibitor with the potential for the treatment of idiopathic pulmonary fibrosis (IPF)



Physicochemical Properties


Molecular Formula C28H30F2N6O8S
Molecular Weight 648.6350
Exact Mass 648.181
CAS # 1450824-22-2
Related CAS # 1450824-22-2;
PubChem CID 73774610
Appearance White to off-white solid powder
Density 1.8±0.1 g/cm3
Boiling Point 1017.2±75.0 °C at 760 mmHg
Flash Point 569.0±37.1 °C
Vapour Pressure 0.0±0.3 mmHg at 25°C
Index of Refraction 1.761
LogP 2.19
Hydrogen Bond Donor Count 6
Hydrogen Bond Acceptor Count 15
Rotatable Bond Count 8
Heavy Atom Count 45
Complexity 903
Defined Atom Stereocenter Count 10
SMILES

S([C@@]1([H])[C@@]([H])([C@]([H])([C@]([H])([C@@]([H])(C([H])([H])O[H])O1)O[H])N1C([H])=C(C2C([H])=C([H])C([H])=C(C=2[H])F)N=N1)O[H])[C@@]1([H])[C@@]([H])([C@]([H])([C@]([H])([C@@]([H])(C([H])([H])O[H])O1)O[H])N1C([H])=C(C2C([H])=C([H])C([H])=C(C=2[H])F)N=N1)O[H]

InChi Key YGIDGBAHDZEYMT-MQFIMZJJSA-N
InChi Code

InChI=1S/C28H30F2N6O8S/c29-15-5-1-3-13(7-15)17-9-35(33-31-17)21-23(39)19(11-37)43-27(25(21)41)45-28-26(42)22(24(40)20(12-38)44-28)36-10-18(32-34-36)14-4-2-6-16(30)8-14/h1-10,19-28,37-42H,11-12H2/t19-,20-,21+,22+,23+,24+,25-,26-,27+,28+/m1/s1
Chemical Name

(2R,2'R,3R,3'R,4S,4'S,5R,5'R,6S,6'S)-6,6'-thiobis(4-(4-(3-fluorophenyl)-1H-1,2,3-triazol-1-yl)-2-(hydroxymethyl)tetrahydro-2H-pyran-3,5-diol)
Synonyms

TD-139 TD139 TD 139
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


References : Cell Intrinsic Galectin-3 Attenuates Neutrophil ROS-Dependent Killing of Candida by Modulating CR3 Downstream Syk Activation. Front Immunol. 2017 Feb 3;8:48.
Additional Infomation Olitigaltin has been investigated for the treatment of Idiopathic Pulmonary Fibrosis.
Olitigaltin is an inhaled, small molecule inhibitor of galectin-3 (Gal-3), with potential anti-fibrotic activity. Upon administration, olitigaltin inhibits the activity of Gal-3. This may prevent the activation of alveolar macrophages and fibroblasts, and the resulting fibrosis in the lungs. Gal-3, a beta-galactoside-binding lectin, is expressed in multiple cell types including macrophages, fibroblasts, activated T-lymphocytes and epithelial cells. It is upregulated in fibrotic lung diseases including idiopathic pulmonary fibrosis (IPF) and interstitial pneumonia associated with collagen vascular disease (CVD-IP), and plays an important role in fibrosis in multiple organs. It is also often dysregulated in cancers, and may play a role in angiogenesis, cell proliferation and cell survival.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.5417 mL 7.7084 mL 15.4169 mL
5 mM 0.3083 mL 1.5417 mL 3.0834 mL
10 mM 0.1542 mL 0.7708 mL 1.5417 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.