PeptideDB

TC-G 1004 1061747-72-5

TC-G 1004 1061747-72-5

CAS No.: 1061747-72-5

TC-G 1004 (compound 16j) is an orally bioavailable A2A adenosine receptor antagonist (inhibitor) with Kis of 0.44 nM and
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

TC-G 1004 (compound 16j) is an orally bioavailable A2A adenosine receptor antagonist (inhibitor) with Kis of 0.44 nM and 80 nM for hA2A and hA1, respectively.

Physicochemical Properties


Molecular Formula C22H27N7O2
Molecular Weight 421.50
Exact Mass 421.223
CAS # 1061747-72-5
PubChem CID 25074316
Appearance Yellow to orange solid powder
LogP 3.629
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 7
Rotatable Bond Count 5
Heavy Atom Count 31
Complexity 600
Defined Atom Stereocenter Count 0
InChi Key JENSDTKXNVHSSN-UHFFFAOYSA-N
InChi Code

InChI=1S/C22H27N7O2/c1-14-12-15(2)29(27-14)22-25-19(13-20(26-22)23-16(3)30)18-6-5-7-21(24-18)28-10-8-17(31-4)9-11-28/h5-7,12-13,17H,8-11H2,1-4H3,(H,23,25,26,30)
Chemical Name

N-[2-(3,5-dimethylpyrazol-1-yl)-6-[6-(4-methoxypiperidin-1-yl)pyridin-2-yl]pyrimidin-4-yl]acetamide
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Ki: 0.44 nM (hA2A), 80 nM (hA1)[1].
ln Vitro With more than 100× selectivity over hA1, TC-G 1004 (compound 16j) is a highly powerful A2A antagonist at both the human and rat receptors[1].
ln Vivo In rat models of Parkinson's disease, TC-G 1004 (compound 16j, 3 mg/kg) exhibits good in vivo oral efficacy and has progressed to preclinical development[1]. When taken orally, TC-G 1004 (compound 16j) dose-dependently amplifies the rotations caused by L-dopa at a MED of 3 mg/kg[1].
References

[1]. Lead optimization of 4-acetylamino-2-(3,5-dimethylpyrazol-1-yl)-6-pyridylpyrimidines as A2A adenosine receptor antagonists for the treatment of Parkinson's disease. J Med Chem. 2008 Nov 27;51(22):7099-110.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3725 mL 11.8624 mL 23.7248 mL
5 mM 0.4745 mL 2.3725 mL 4.7450 mL
10 mM 0.2372 mL 1.1862 mL 2.3725 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.