PeptideDB

Setidegrasib 2821793-99-9

Setidegrasib 2821793-99-9

CAS No.: 2821793-99-9

Setidegrasib (formerly known as KRAS G12D inhibitor 17; example 8) is a novel and potent KRAS G12D PROTAC degrader based
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Setidegrasib (formerly known as KRAS G12D inhibitor 17; example 8) is a novel and potent KRAS G12D PROTAC degrader based on the quinazoline-linked (4R)-4-hydroxy-L-prolinamide scaffold and the Von Hippel-Lindau(VHL)ligand. It induces the KRAS (Kirsten rat sarcoma viral oncogene homologue) protein with the G12D mutation to degrade. Setidegrasib has an excellent activity of inducing the degradation of G12D-mutation KRAS protein and an activity of inhibiting a G12D-mutation KRAS, and can be used as a therapeutic agent for pancreatic cancer.

Physicochemical Properties


Molecular Formula C60H65FN12O7S
Exact Mass 1116.48
Elemental Analysis C, 64.50; H, 5.86; F, 1.70; N, 15.04; O, 10.02; S, 2.87
CAS # 2821793-99-9
Related CAS # 2821793-99-9
PubChem CID 164875418
Appearance White to off-white solid
LogP 7.7
Hydrogen Bond Donor Count 5
Hydrogen Bond Acceptor Count 17
Rotatable Bond Count 17
Heavy Atom Count 81
Complexity 2130
Defined Atom Stereocenter Count 6
SMILES

CC1=C(C=C2C(=C1C3=C(C=C4C(=C3OCC5=CC=C(C=C5)C6=CN(N=N6)[C@@H](C(C)C)C(=O)N7C[C@@H](C[C@H]7C(=O)N[C@@H](CO)C8=CC=C(C=C8)C9=C(N=CS9)C)O)N=C(N=C4N1C[C@@H]3C[C@H]1CN3)OC1CCOCC1)C1CC1)C=NN2)F

InChi Key XXWMEQMGQNHRAF-WFJRNIGCSA-N
InChi Code

InChI=1S/C60H65FN12O7S/c1-31(2)54(59(77)72-26-41(75)20-50(72)58(76)65-49(28-74)37-11-13-38(14-12-37)56-33(4)63-30-81-56)73-27-48(69-70-73)36-7-5-34(6-8-36)29-79-55-52(51-32(3)46(61)22-47-45(51)24-64-68-47)43(35-9-10-35)21-44-53(55)66-60(80-42-15-17-78-18-16-42)67-57(44)71-25-39-19-40(71)23-62-39/h5-8,11-14,21-22,24,27,30-31,35,39-42,49-50,54,62,74-75H,9-10,15-20,23,25-26,28-29H2,1-4H3,(H,64,68)(H,65,76)/t39-,40-,41+,49-,50-,54-/m0/s1
Chemical Name

(2S,4R)-1-((2S)-2-(4-(4-(((4-((1S,4S)-2,5-diazabicyclo[2.2.1]heptan-2-yl)-6-cyclopropyl-7-(6-fluoro-5-methyl-1H-indazol-4-yl)-2-((tetrahydro-2H-pyran-4-yl)oxy)quinazolin-8-yl)oxy)methyl)phenyl)-1H-1,2,3-triazol-1-yl)-3-methylbutanoyl)-4-hydroxy-N-((R)-2-hydroxy-1-(4-(4-methylthiazol-5-yl)phenyl)ethyl)pyrrolidine-2-carboxamide
Synonyms

KRAS G12D inhibitor 17
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets KRAS(G12D)
ln Vitro Setidegrasib has an excellent activity of inducing the degradation of G12D-mutation KRAS protein and an activity of inhibiting a G12D-mutation KRAS, and can be used as a therapeutic agent for pancreatic cancer.
References

[1]. Preparation of quinazoline-linked (4R)-4-hydroxy-L-prolinamide compounds for inducing degradation of G12D-mutation KRAS protein: World Intellectual Property Organization, WO2022173032[P]. 2022-08-18.


Solubility Data


Solubility (In Vitro) DMSO: ~125 mg/mL (112 mM)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)