Physicochemical Properties
| Molecular Formula | C10H12N2O |
| Molecular Weight | 176.22 |
| Exact Mass | 176.095 |
| CAS # | 50-67-9 |
| Related CAS # | Serotonin hydrochloride;153-98-0 |
| PubChem CID | 5202 |
| Appearance | White to off-white solid |
| Density | 1.011 g/mL at 25 °C(lit.) |
| Boiling Point | 211-212 °C(lit.) |
| Melting Point | 22-23 °C(lit.) |
| Flash Point | 205 °F |
| Index of Refraction | n20/D 1.538(lit.) |
| LogP | 2.075 |
| Hydrogen Bond Donor Count | 3 |
| Hydrogen Bond Acceptor Count | 2 |
| Rotatable Bond Count | 2 |
| Heavy Atom Count | 13 |
| Complexity | 174 |
| Defined Atom Stereocenter Count | 0 |
| SMILES | C1=CC2=C(C=C1O)C(=CN2)CCN |
| InChi Key | QZAYGJVTTNCVMB-UHFFFAOYSA-N |
| InChi Code | InChI=1S/C10H12N2O/c11-4-3-7-6-12-10-2-1-8(13)5-9(7)10/h1-2,5-6,12-13H,3-4,11H2 |
| Chemical Name | 3-(2-aminoethyl)-1H-indol-5-ol |
| HS Tariff Code | 2934.99.9001 |
| Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
| Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
| Targets | Microbial Metabolite Human Endogenous Metabolite |
| ln Vitro | Serotonin is an endogenous 5-HT receptor agonist and a monoamine neurotransmitter in the central nervous system. Serotonin also binds non-competitively to the site occupied by catechol substrates with a binding affinity similar to that of catechol itself (Ki= 44 μM), inhibiting catechol O-methyltransferase (COMT), an enzyme that helps modulate the experience of pain. The findings indicate that adding 100 μM of serotonin reduces COMT's reaction velocity[1]. |
| ln Vivo | Strong hypersensitivity is produced by serotonin when compared to controls treated with saline (p<0.001)[1]. After DSS colitis is induced, IL-13-/-mice receiving serotonin show a markedly higher colonic 5-HT level than IL-13-/-mice receiving a vehicle[2]. |
| Enzyme Assay | The subcutaneous and systemic injection of serotonin reduces cutaneous and visceral pain thresholds and increases responses to noxious stimuli. Different subtypes of 5-hydroxytryptamine (5-HT) receptors are suggested to be associated with different types of pain responses. Here we show that serotonin also inhibits catechol O-methyltransferase (COMT), an enzyme that contributes to modultion the perception of pain, via non-competitive binding to the site bound by catechol substrates with a binding affinity comparable to the binding affinity of catechol itself (K(i) = 44 μM). Using computational modeling, biochemical tests and cellular assays we show that serotonin actively competes with the methyl donor S-adenosyl-L-methionine (SAM) within the catalytic site. Binding of serotonin to the catalytic site inhibits the access of SAM, thus preventing methylation of COMT substrates. The results of in vivo animal studies show that serotonin-induced pain hypersensitivity in mice is reduced by either SAM pretreatment or by the combined administration of selective antagonists for β(2)- and β(3)-adrenergic receptors, which have been previously shown to mediate COMT-dependent pain signaling. Our results suggest that inhibition of COMT via serotonin binding contributes to pain hypersensitivity, providing additional strategies for the treatment of clinical pain conditions [1]. |
| Cell Assay | Peritoneal cavity cells from WT and IL-13-/- mice are harvested and cultured, either with or without dextran sodium sulfate (DSS) treatment, for the purpose of macrophage culture. Following a 24-hour treatment with lipopolysaccharides (LPS; 100 ng/mL) or serotonin hydrochloride (10–10 M), cells are plated at a concentration of 3.0×106 cells per milliliter. After being collected, the culture supernatant is kept at -80°C until the protein array system is used to determine the levels of cytokines[2]. |
| Animal Protocol | Oral administration of 5% DSS in drinking water for five days induces diarrhea caused by dextran sodium sulfate (DSS). A different experiment involves injecting 100 mg/kg of serotonin hydrochloride (5-HTP) subcutaneously into IL-13-/-mice twice a day for 8 days, starting 3 days before DSS colitis is induced. In contrast, saline is used as a vehicle in the IL-13-/-modified mice. Upon reaching a predefined end point (such as losing more than 20% of their body weight or experiencing a notable decline in their physical state), animals are put to sleep before being put to death by cervical dislocation at the end of each experiment[2]. |
| ADME/Pharmacokinetics |
Metabolism / Metabolites Serotonin has known human metabolites that include (2S,3S,4S,5R)-6-[[3-(2-Aminoethyl)-1H-indol-5-yl]oxy]-3,4,5-trihydroxy-2-oxanecarboxylic acid and 3-Ethyl-1H-indol-5-ol. Serotonin is a known human metabolite of 5-methoxytryptamine. |
| References |
[1]. Serotonin-induced hypersensitivity via inhibition of catechol O-methyltransferase activity. Mol Pain. 2012 Apr 13;8:25. [2]. Interleukin 13 and serotonin: linking the immune and endocrine systems in murine models of intestinal inflammation. PLoS One. 2013 Aug 28;8(8):e72774. |
| Additional Infomation |
Serotonin is a primary amino compound that is the 5-hydroxy derivative of tryptamine. It has a role as a human metabolite, a mouse metabolite and a neurotransmitter. It is a monoamine molecular messenger, a primary amino compound, a member of phenols, a member of hydroxyindoles and a member of tryptamines. It is functionally related to a tryptamine. It is a conjugate base of a serotonin(1+). For temporary relief of nervousness, anxiety, mood swings, joint pains, weakness, drowsiness, itching and lethargy. Not evaluated by the FDA, homeopathic product. Serotonin has been reported in Mamestra brassicae, Bufo gargarizans, and other organisms with data available. A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. See also: Serotonin Hydrochloride (active moiety of); Serotonin; tryptophan (component of); Acetylcholine Chloride; Histamine; Serotonin (component of) ... View More ... |
Solubility Data
| Solubility (In Vitro) |
DMSO: 100 mg/mL (567.47 mM) H2O: < 0.1 mg/mL |
| Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
| Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
| 1 mM | 5.6747 mL | 28.3736 mL | 56.7472 mL | |
| 5 mM | 1.1349 mL | 5.6747 mL | 11.3494 mL | |
| 10 mM | 0.5675 mL | 2.8374 mL | 5.6747 mL |