PeptideDB

Ristomycin sulfate 11140-99-1

Ristomycin sulfate 11140-99-1

CAS No.: 11140-99-1

Ristomycin sulfate is a glycopeptide antibiotic extracted from Nocardia lurida.
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Ristomycin sulfate is a glycopeptide antibiotic extracted from Nocardia lurida.

Physicochemical Properties


Molecular Formula C95H110N8O44.H2SO4
Molecular Weight 2166.00
Exact Mass 2164.628
CAS # 11140-99-1
Related CAS # Ristocetin;1404-55-3
PubChem CID 44134936
Appearance White to off-white solid powder
Hydrogen Bond Donor Count 31
Hydrogen Bond Acceptor Count 50
Rotatable Bond Count 17
Heavy Atom Count 152
Complexity 4490
Defined Atom Stereocenter Count 0
InChi Key HHRPQUHYQBGHHF-UHFFFAOYSA-N
InChi Code

InChI=1S/C95H110N8O44.H2O4S/c1-30-47(109)18-37-20-49(30)139-50-19-35(9-16-46(50)108)59(97)84(125)102-64-68(113)33-5-11-40(12-6-33)137-52-21-38-22-53(81(52)145-95-83(76(121)72(117)56(143-95)29-134-91-78(123)73(118)67(112)32(3)136-91)147-94-82(75(120)71(116)55(27-105)142-94)146-92-77(122)69(114)48(110)28-133-92)138-41-13-7-34(8-14-41)80(144-57-25-44(96)66(111)31(2)135-57)65-89(130)101-63(90(131)132-4)43-23-39(106)24-51(140-93-79(124)74(119)70(115)54(26-104)141-93)58(43)42-17-36(10-15-45(42)107)60(85(126)103-65)98-87(128)62(38)99-86(127)61(37)100-88(64)129;1-5(2,3)4/h5-24,31-32,44,48,54-57,59-80,82-83,91-95,104-124H,25-29,96-97H2,1-4H3,(H,98,128)(H,99,127)(H,100,129)(H,101,130)(H,102,125)(H,103,126);(H2,1,2,3,4)
Chemical Name

methyl 22-amino-2-(4-amino-5-hydroxy-6-methyloxan-2-yl)oxy-64-[3-[4,5-dihydroxy-6-(hydroxymethyl)-3-(3,4,5-trihydroxyoxan-2-yl)oxyoxan-2-yl]oxy-4,5-dihydroxy-6-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxymethyl]oxan-2-yl]oxy-18,26,31,44,49-pentahydroxy-30-methyl-21,35,38,54,56,59-hexaoxo-47-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-7,13,28-trioxa-20,36,39,53,55,58-hexazaundecacyclo[38.14.2.23,6.214,17.219,34.18,12.123,27.129,33.141,45.010,37.046,51]hexahexaconta-3(66),4,6(65),8,10,12(64),14(63),15,17(62),23(61),24,26,29(60),30,32,41(57),42,44,46(51),47,49-henicosaene-52-carboxylate;sulfuric acid
Synonyms

Ristocetin A sulfate; RISTOCETIN; Ristocetin sulfate salt; 11140-99-1; Ristocetin A (sulfate); CHEBI:201735; AKOS040756265; Ristocetin*sulfate, Ristomycin III*sulfate
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Glycopeptide
ln Vitro Whether the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor for ristocetin-dependent binding of von Willebrand factor (vWF) has been examined by reconstitution with the purified components using a solid-phase bead assay. Purified GP Ib-IX complex was bound and orientated on the beads via a monoclonal antibody, FMC 25, directed against the membrane-associated region of the complex. Specific binding of 125I-labeled vWF to the GP Ib-IX complex coated beads was strictly ristocetin dependent with maximal binding occurring at ristocetin concentrations greater than or equal to 1 mg/mL. Ristocetin-dependent specific binding of 125I-labeled vWF was saturable. The observed binding was specific to the interaction between vWF and the GP Ib-IX complex since there was no ristocetin-dependent specific binding of vWF if the physicochemically related platelet membrane glycoprotein, GP IIb, was substituted for the GP Ib-IX complex in a corresponding bead assay. Further, neither bovine serum albumin nor other adhesive glycoproteins, such as fibrinogen or fibronectin, specifically bound to the GP Ib-IX complex in the presence of ristocetin. Ristocetin-dependent binding of vWF to platelets and to GP Ib-IX complex coated beads was inhibited by monoclonal antibodies against a 45,000 molecular weight N-terminal region of GP Ib but not by monoclonal antibodies directed against other regions of the GP Ib-IX complex. Similar correspondence between platelets and purified GP Ib-IX complex with respect to the ristocetin-dependent binding of vWF was obtained with anti-vWF monoclonal antibodies [1].
References

[1]. Ristocetin-dependent reconstitution of binding of von Willebrand factor to purified human platelet membrane glycoprotein Ib-IX complex. Biochemistry. 1988 Jan 26;27(2):633-40.

Additional Infomation Ristocetin A sulfate is an oligosaccharide.
An antibiotic mixture of two components, A and B, obtained from Nocardia lurida (or the same substance produced by any other means). It is no longer used clinically because of its toxicity. It causes platelet agglutination and blood coagulation and is used to assay those functions in vitro.
See also: Ristocetin (annotation moved to).

Solubility Data


Solubility (In Vitro) DMSO : 100 mg/mL (46.17 mM)
Solubility (In Vivo) Solubility in Formulation 1: ≥ 2.5 mg/mL (1.15 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (1.15 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 3: ≥ 2.5 mg/mL (1.15 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.4617 mL 2.3084 mL 4.6168 mL
5 mM 0.0923 mL 0.4617 mL 0.9234 mL
10 mM 0.0462 mL 0.2308 mL 0.4617 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.