PeptideDB

RIPK2 PROTAC degrader 1 2126803-41-4

RIPK2 PROTAC degrader 1 2126803-41-4

CAS No.: 2126803-41-4

RIPK2 PROTAC degrader 1 is a potent and selective RIPK2 PROTAC. Effectively degrading RIPK2 with a pIC50 of 8, RIP2 Kina
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

RIPK2 PROTAC degrader 1 is a potent and selective RIPK2 PROTAC. Effectively degrading RIPK2 with a pIC50 of 8, RIP2 Kinase Inhibitor 4 also prevents the release of associated TNF-α.

Physicochemical Properties


Molecular Formula C50H66F2N14O7S
Exact Mass 1044.492
CAS # 2126803-41-4
Related CAS # 2126803-41-4
PubChem CID 134496515
Appearance Typically exists as solid at room temperature
LogP 4.7
Hydrogen Bond Donor Count 6
Hydrogen Bond Acceptor Count 18
Rotatable Bond Count 19
Heavy Atom Count 74
Complexity 2010
Defined Atom Stereocenter Count 4
SMILES

CC1=C(NN=C1NC2=NC=NC3=CC(=C(C=C32)S(=O)(=O)C(C)(C)C)OCCCN4CCN(CC4)C5=NC=C(N=C5)C(=O)N[C@H]6C[C@H](N(C6)C(=O)[C@H](C(C)(C)C)NC(=O)[C@H](C)NC)C(=O)NC7=C(C=CC=C7F)F)C

InChi Key CHNBEZLJAQUZEX-LFRONEFISA-N
InChi Code

InChI=1S/C50H66F2N14O7S/c1-28-29(2)62-63-43(28)61-44-32-22-39(74(71,72)50(7,8)9)38(23-35(32)56-27-57-44)73-20-12-15-64-16-18-65(19-17-64)40-25-54-36(24-55-40)46(68)58-31-21-37(47(69)59-41-33(51)13-11-14-34(41)52)66(26-31)48(70)42(49(4,5)6)60-45(67)30(3)53-10/h11,13-14,22-25,27,30-31,37,42,53H,12,15-21,26H2,1-10H3,(H,58,68)(H,59,69)(H,60,67)(H2,56,57,61,62,63)/t30-,31-,37-,42+/m0/s1
Chemical Name

5-[4-[3-[6-tert-butylsulfonyl-4-[(4,5-dimethyl-1H-pyrazol-3-yl)amino]quinazolin-7-yl]oxypropyl]piperazin-1-yl]-N-[(3S,5S)-5-[(2,6-difluorophenyl)carbamoyl]-1-[(2S)-3,3-dimethyl-2-[[(2S)-2-(methylamino)propanoyl]amino]butanoyl]pyrrolidin-3-yl]pyrazine-2-carboxamide
Synonyms

RIP2 Kinase Inhibitor 4
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets RIPK2 (pIC50 = 8 nM); cIAP1
ln Vitro The RIPK2 PROTAC degrader 1 (Compound 20) uses a brand-new inhibitor of apoptosis (IAP) binder. The binding potency of RIP2 Kinase Inhibitor 4 is increased at the XIAP BIR2 domain but has a relatively reduced binding potency at the cIAP1 and XIAP BIR3 domains[1].
RIPK2 PROTAC degrader 1 (Compound 20) recruits the IAP E3 ligases and shows markedly reduced inhibition of muramyl dipeptide (MDP)-stimulated TNFα production in human peripheral blood mononuclear cells (PBMCs) (pIC50 of 9.3)[1].
ln Vivo At the 48-hour mark, the first in vivo evaluation of RIP2 Kinase Inhibitor 4 (Compound 20) in rats dosed at 0.5 mg/kg SC showed significant RIPK2 degradation and inhibition of MDP-stimulated TNFα release[1].
References

[1]. Optimization of a Series of RIPK2 PROTACs. J Med Chem. 2021 Sep 9;64(17):12978-13003.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)