PeptideDB

Pyridinium bisretinoid A2E TFA (A2E TFA) 1821308-73-9

Pyridinium bisretinoid A2E TFA (A2E TFA) 1821308-73-9

CAS No.: 1821308-73-9

Pyridinium bisretinoid A2E (A2E) TFA is a fluorophore extracted from lipofuscin of the retinal pigment epithelium (RPE).
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Pyridinium bisretinoid A2E (A2E) TFA is a fluorophore extracted from lipofuscin of the retinal pigment epithelium (RPE). Pyridinium bisretinoid A2E TFA is an inducer of apoptosis under blue light-induced conditions. Photoactivation of Pyridinium bisretinoid A2E TFA mediates the production of autophagy and reactive oxygen species. Pyridinium bisretinoid A2E TFA may be utilized in the study of retinal degenerative diseases.

Physicochemical Properties


Molecular Formula C44H58F3NO3
Molecular Weight 705.931443691254
Exact Mass 705.436
CAS # 1821308-73-9
Related CAS # Pyridinium bisretinoid A2E-d4 TFA;Pyridinium bisretinoid A2E;173449-96-2
PubChem CID 154726166
Appearance Brown to red solid powder
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 6
Rotatable Bond Count 11
Heavy Atom Count 51
Complexity 1330
Defined Atom Stereocenter Count 0
SMILES

CC1=C(C(CCC1)(C)C)/C=C/C(=C/C=C/C2=CC(=[N+](C=C2)CCO)/C=C(\C)/C=C/C=C(\C)/C=C/C3=C(CCCC3(C)C)C)/C.C(=O)(C(F)(F)F)[O-]

InChi Key ZFPRGIJSRMWZMS-KFKWWMHDSA-M
InChi Code

InChI=1S/C42H58NO.C2HF3O2/c1-32(20-22-39-35(4)17-12-25-41(39,6)7)14-10-16-34(3)30-38-31-37(24-27-43(38)28-29-44)19-11-15-33(2)21-23-40-36(5)18-13-26-42(40,8)9;3-2(4,5)1(6)7/h10-11,14-16,19-24,27,30-31,44H,12-13,17-18,25-26,28-29H2,1-9H3;(H,6,7)/q+1;/p-1/b16-10+,19-11+,22-20+,23-21+,32-14+,33-15+,34-30+;
Chemical Name

2-[2-[(1E,3E,5E,7E)-2,6-dimethyl-8-(2,6,6-trimethylcyclohexen-1-yl)octa-1,3,5,7-tetraenyl]-4-[(1E,3E,5E)-4-methyl-6-(2,6,6-trimethylcyclohexen-1-yl)hexa-1,3,5-trienyl]pyridin-1-ium-1-yl]ethanol;2,2,2-trifluoroacetate
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro Pyridinium bisretinoid A2E (A2E) is converted into at least two products when exposed to light. Among these is the hydrophilic Epoxy-A2E, which may be moved from the membrane into aqueous solutions. Unidentified hydrophobic compound is another product [3].
References

[1]. Photoactivation of N-retinylidene-N-retinylethanolamine compromises autophagy in retinal pigmented epithelial cells. Food Chem Toxicol. 2019 Sep;131:110555.

[2]. S. Ben-Shabat, et al; Elucidating the Role of Pyridinium bis-Retinoid(A2E) in Retinal Pigment Epithelium (RPE) Cell Damages. Invest. Ophthalmol. Vis. Sci. 2007;48(13):2201.

[3]. Interaction of pyridinium bis-retinoid (A2E) with bilayer lipid membranes. J Photochem Photobiol B. 2007 Feb 1;86(2):177-85.


Solubility Data


Solubility (In Vitro) DMSO : 100 mg/mL (141.66 mM)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4166 mL 7.0829 mL 14.1657 mL
5 mM 0.2833 mL 1.4166 mL 2.8331 mL
10 mM 0.1417 mL 0.7083 mL 1.4166 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.