PeptideDB

M47 890808-56-7

M47 890808-56-7

CAS No.: 890808-56-7

M47 is a small molecule that selectively destabilizes cryptochrome 1 (CRY1) and increases CRY1 degradation in the nucleu
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

M47 is a small molecule that selectively destabilizes cryptochrome 1 (CRY1) and increases CRY1 degradation in the nucleus. M47 enhances apoptosis in Ras-transformed p53-deficient mouse skin fibroblast cell lines and extends lifespan in p53 knockout mice. M47 may be utilized in cancer research.

Physicochemical Properties


Molecular Formula C28H22CLNO4
Molecular Weight 471.931586742401
Exact Mass 471.123
CAS # 890808-56-7
PubChem CID 23601714
Appearance Light yellow to light brown solid powder
LogP 5.9
Hydrogen Bond Donor Count 0
Hydrogen Bond Acceptor Count 4
Rotatable Bond Count 2
Heavy Atom Count 34
Complexity 812
Defined Atom Stereocenter Count 0
InChi Key HUWLQJUHXIKAIW-UHFFFAOYSA-N
InChi Code

InChI=1S/C28H22ClNO4/c1-16-24-22(33-26(16)27(32)30-14-13-17-5-3-4-6-20(17)30)11-12-23-25(24)21(31)15-28(2,34-23)18-7-9-19(29)10-8-18/h3-12H,13-15H2,1-2H3
Chemical Name

7-(4-chlorophenyl)-2-(2,3-dihydroindole-1-carbonyl)-1,7-dimethyl-8H-furo[3,2-f]chromen-9-one
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro M47 (0-10 μM; 0-120 h; U2OS Bmal1-dLuc cells) alters circadian rhythms and decreases CRY1 half-life in a dose-dependent way [1]. In U2OS cells, M47 (10 μM; 24-44 h) lowers CRY1 levels [1].
ln Vivo M47 (5–1000 mg/kg; intraperitoneal; daily, for 5 days; C57BL/6J mice and p53 knockout C57BL/6J mice) is well tolerated, specifically shortens the half-life of CRY1, and increases cell apoptosis in vivo [1].
Cell Assay Western Blot Analysis[1]
Cell Types: U2OS cells
Tested Concentrations: 10 μM
Incubation Duration: 24-44 hrs (hours)
Experimental Results: diminished CRY1 protein levels between 24 and 48 h.
Animal Protocol Animal/Disease Models: C57BL/6 J mice and p53 gene knockout C57BL/6 J mice[1]
Doses: 5, 50, 300 and 1000 mg/kg
Route of Administration: intraperitoneal (ip)injection, daily, for 5 days
Experimental Results: Prolonged the life span of p53 gene knockout mice.
References

[1]. Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice. Nat Commun. 2022 Nov 8;13(1):6742.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1190 mL 10.5948 mL 21.1896 mL
5 mM 0.4238 mL 2.1190 mL 4.2379 mL
10 mM 0.2119 mL 1.0595 mL 2.1190 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.