PeptideDB

Lusianthridin 87530-30-1

Lusianthridin 87530-30-1

CAS No.: 87530-30-1

Lusianthridin is a natural compound from Dendrobium venustum that has anti-migration effects. Lusianthridin promotes the
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Lusianthridin is a natural compound from Dendrobium venustum that has anti-migration effects. Lusianthridin promotes the degradation of c-Myc by inhibiting Src-STAT3 signaling.

Physicochemical Properties


Molecular Formula C15H14O3
Molecular Weight 242.27
Exact Mass 242.094
CAS # 87530-30-1
PubChem CID 442702
Appearance White to off-white solid powder
LogP 2.872
Hydrogen Bond Donor Count 2
Hydrogen Bond Acceptor Count 3
Rotatable Bond Count 1
Heavy Atom Count 18
Complexity 294
Defined Atom Stereocenter Count 0
InChi Key RDKDIPDDUFMMMT-UHFFFAOYSA-N
InChi Code

InChI=1S/C15H14O3/c1-18-12-7-10-3-2-9-6-11(16)4-5-13(9)15(10)14(17)8-12/h4-8,16-17H,2-3H2,1H3
Chemical Name

7-methoxy-9,10-dihydrophenanthrene-2,5-diol
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro In both H460 and H292 cells, lenianthridin (0-100 μM) decreases cell viability at doses higher than 50 μM[1]. The CSC populations in the H460 and H292 cells of the CSC spheres are dramatically reduced by lasianthridin, with the size of the H460 CSC spheres significantly decreasing by roughly 10%, 63%, and 77% at day 3 at concentrations of 5, 10, and 20 μM, respectively[1].
Cell Assay Cell Viability Assay[1]
Cell Types: The human non-small cell lung cancer cell lines, NCI-H460, and NCI-H292 cells[1]. 0-100 μM.
Tested Concentrations: 0-100 μM.
Incubation Duration: 24 h.
Experimental Results: Caused a significant reduction in terms of cell viability at concentrations greater than 50 μM in both H460 and H292 cells.
References

[1]. Targeting of Lung Cancer Stem Cells via Src-STAT3 Suppression. Phytomedicine. 2019 Sep;62:152932.

Additional Infomation 7-methoxy-9,10-dihydrophenanthrene-2,5-diol is a dihydrophenanthrene.
7-Methoxy-9,10-dihydrophenanthrene-2,5-diol has been reported in Dioscorea oppositifolia, Arundina graminifolia, and other organisms with data available.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.1276 mL 20.6381 mL 41.2763 mL
5 mM 0.8255 mL 4.1276 mL 8.2553 mL
10 mM 0.4128 mL 2.0638 mL 4.1276 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.