PeptideDB

LKY-047 1954681-29-8

LKY-047 1954681-29-8

CAS No.: 1954681-29-8

LKY-047, an analogue of Decursin, is a specific, reversible and competitive inhibitor of cytochrome P45022J2 (CYP2J2) wi
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

LKY-047, an analogue of Decursin, is a specific, reversible and competitive inhibitor of cytochrome P45022J2 (CYP2J2) with IC50 of 1.7 μM. LKY-047 is not effective against other human P450s, such as CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A.

Physicochemical Properties


Molecular Formula C23H19NO7
Molecular Weight 421.40
Exact Mass 421.116
CAS # 1954681-29-8
PubChem CID 127043883
Appearance Light yellow to yellow solid powder
LogP 4.4
Hydrogen Bond Donor Count 0
Hydrogen Bond Acceptor Count 7
Rotatable Bond Count 4
Heavy Atom Count 31
Complexity 775
Defined Atom Stereocenter Count 1
SMILES

CC1([C@H](CC2=C(O1)C=C3C(=C2)C=CC(=O)O3)OC(=O)/C=C/C4=CC=C(C=C4)[N+](=O)[O-])C

InChi Key AEVGNLMZEXKNKR-MRSBXDGLSA-N
InChi Code

InChI=1S/C23H19NO7/c1-23(2)20(30-22(26)9-5-14-3-7-17(8-4-14)24(27)28)12-16-11-15-6-10-21(25)29-18(15)13-19(16)31-23/h3-11,13,20H,12H2,1-2H3/b9-5+/t20-/m0/s1
Chemical Name

[(3S)-2,2-dimethyl-8-oxo-3,4-dihydropyrano[3,2-g]chromen-3-yl] (E)-3-(4-nitrophenyl)prop-2-enoate
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets CYP2J2 1.7 μM (IC50)
ln Vitro With Ki values of 0.96 μM and 2.61 μM, respectively, LKY-047 is a potent competitive inhibitor of CYP2J2-mediated astemizole O-demethylase and terfenadine hydroxylase activity. With a Ki value of 3.61 μM, LKY-047 also functioned as an uncompetitive inhibitor of CYP2J2-mediated ebastine hydroxylation[1]. LKY-047 is shown to inhibit CYP2J2 by 85.3% at a concentration of 20 μM, which is roughly 20-fold larger than the Ki value. The enzyme activity of the other P450s examined are only marginally affected by LKY-047. At 20 μM concentration, LKY-047 mildly inhibits 37.2% of CYP2D6 enzyme activity[1].
References

[1]. LKY-047: First Selective Inhibitor of Cytochrome P450 2J2. Drug Metab Dispos. 2017 Jul;45(7):765-769.


Solubility Data


Solubility (In Vitro) DMSO: 16.67 mg/mL (39.56 mM)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3730 mL 11.8652 mL 23.7304 mL
5 mM 0.4746 mL 2.3730 mL 4.7461 mL
10 mM 0.2373 mL 1.1865 mL 2.3730 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.