PeptideDB

LE 300 274694-98-3

LE 300 274694-98-3

CAS No.: 274694-98-3

LE 300 is a potent and specific dopamine D1-like receptor antagonist (inhibitor) with Kis of 1.9 nM and 7.5 nM in CHO ce
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

LE 300 is a potent and specific dopamine D1-like receptor antagonist (inhibitor) with Kis of 1.9 nM and 7.5 nM in CHO cell membranes expressing human dopamine D1 and D5 receptors, respectively. In a rat tail artery experiment, LE 300 is an antagonist of 5-HT2A receptors with a pA2 of 8.32.

Physicochemical Properties


Molecular Formula C20H22N2
Molecular Weight 290.40
Exact Mass 290.178
CAS # 274694-98-3
PubChem CID 4350931
Appearance Off-white to light yellow solid powder
Density 1.114g/cm3
Boiling Point 464ºC at 760 mmHg
Flash Point 234.4ºC
Vapour Pressure 8.69E-09mmHg at 25°C
Index of Refraction 1.63
LogP 3.727
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 1
Rotatable Bond Count 0
Heavy Atom Count 22
Complexity 369
Defined Atom Stereocenter Count 0
SMILES

CN1CCC2=CC=CC=C2CC2=C(C3=CC=CC=C3N2)CC1

InChi Key YEWGIGCYIAMFMA-UHFFFAOYSA-N
InChi Code

InChI=1S/C20H22N2/c1-22-12-10-15-6-2-3-7-16(15)14-20-18(11-13-22)17-8-4-5-9-19(17)21-20/h2-9,21H,10-14H2,1H3
Chemical Name

11-methyl-11,21-diazatetracyclo[12.7.0.03,8.015,20]henicosa-1(14),3,5,7,15,17,19-heptaene
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Human D1 Receptor 1.9 nM (Ki) Human D5 Receptor 7.5 nM (Ki) Rat 5-HT2A 8.32 (pA2)
References [1]. Kassack MU, et al. Pharmacological characterization of the benz[d]indolo[2,3-g]azecine LE300, a novel type of a nanomolar dopamine receptor antagonist. Naunyn Schmiedebergs Arch Pharmacol. 2002 Dec;366(6):543-50.
[2]. Rostom SA. Novel fused pyrrole heterocyclic ring systems as structure analogs of LE 300: Synthesis and pharmacological evaluation as serotonin 5-HT(2A), dopamine and histamine H(1) receptor ligands. Arch Pharm (Weinheim). 2010 Feb;343(2):73-80.
Additional Infomation LSM-2007 is a member of indoles.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.4435 mL 17.2176 mL 34.4353 mL
5 mM 0.6887 mL 3.4435 mL 6.8871 mL
10 mM 0.3444 mL 1.7218 mL 3.4435 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.