Physicochemical Properties
| Molecular Formula | C28H33F3N4O3 |
| Molecular Weight | 530.58 |
| CAS # | 916828-66-5 |
| Appearance | Typically exists as solid at room temperature |
| HS Tariff Code | 2934.99.9001 |
| Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
| Targets | IC50: 4.65 ± 0.28 nM (human 11β-HSD1), 0.97 ± 0.019 nM (rat 11β-HSD1), 0.74 ± 0.050 nM (rat 11β-HSD1), > 30 μM (human 11β-HSD2)[1] |
| ln Vitro | JTT-654 (0.1-10 μM, 24 h) inhibits the production of angiotensinogen in 3T3-L1 adipocytes treated with cortisone (HY-17461) [1]. |
| ln Vivo | JTT-654 (1-10 mg/kg, oral, single dose) inhibits 11β-HSD1 activity in liver and adipose tissue [1]. JTT-654 (1-10 mg/kg, oral, once a day, for 4 days) significantly attenuates the effects of cortisone (HY-17461) in rats [1]. JTT-654 (1.5-15 mg/kg, oral, twice a day, for 19 days) improves insulin resistance and hyperglycemia in non-obese type 2 diabetic rat models [1]. |
| Animal Protocol |
Animal/Disease Models:SD rats (8 weeks old)[1] Doses: 1, 3, or 10 mg/kg Route of Administration: Orally, single administration Experimental Results: The inhibitory effect for cortisone-cortisol conversion in liver and fat was dose dependent. In the 10 mg/kg JTT-654 group, the % inhibition in both tissues (Liver and Adipose) was almost 100% up to 8 h post-dose, and approximately 70% inhibition was still observed even at 24 h post-dose. |
| References |
[1]. An 11-Beta Hydroxysteroid Dehydrogenase Type 1 Inhibitor, JTT-654 Ameliorates Insulin Resistance and Non-obese Type 2 Diabetes. Biol Pharm Bull. 2023;46(7):969-978. [2]. JTT-654, an 11-beta hydroxysteroid dehydrogenase type 1 inhibitor, improves hypertension and diabetic kidney injury by suppressing angiotensinogen production. J Pharmacol Sci. 2024 Apr;154(4):246-255. |
Solubility Data
| Solubility (In Vitro) | May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples |
| Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
| Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
| 1 mM | 1.8847 mL | 9.4236 mL | 18.8473 mL | |
| 5 mM | 0.3769 mL | 1.8847 mL | 3.7695 mL | |
| 10 mM | 0.1885 mL | 0.9424 mL | 1.8847 mL |