PeptideDB

HX630 188844-52-2

HX630 188844-52-2

CAS No.: 188844-52-2

HX630 is a potent retinoic acid X receptor (RXR) agonist that can cause apoptosis and has anti-tumor effects and may be
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

HX630 is a potent retinoic acid X receptor (RXR) agonist that can cause apoptosis and has anti-tumor effects and may be utilized in Cushing's disease study.

Physicochemical Properties


Molecular Formula C28H27NO2S
Molecular Weight 441.58
Exact Mass 441.176
CAS # 188844-52-2
PubChem CID 9889522
Appearance Typically exists as solid at room temperature
LogP 6.803
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 4
Rotatable Bond Count 2
Heavy Atom Count 32
Complexity 751
Defined Atom Stereocenter Count 0
SMILES

CC1(CCC(C2=C1C=C3C(=C2)SC4=CC=CC=C4N=C3C5=CC=C(C=C5)C(=O)O)(C)C)C

InChi Key PFGCWQPTOKPRRK-UHFFFAOYSA-N
InChi Code

InChI=1S/C28H27NO2S/c1-27(2)13-14-28(3,4)21-16-24-19(15-20(21)27)25(17-9-11-18(12-10-17)26(30)31)29-22-7-5-6-8-23(22)32-24/h5-12,15-16H,13-14H2,1-4H3,(H,30,31)
Chemical Name

4-(7,7,10,10-tetramethyl-8,9-dihydronaphtho[2,3-b][1,5]benzothiazepin-12-yl)benzoic acid
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro In a dose-dependent manner, HX630 (0.1-10 μM, 96 h) can cause apoptosis and limit cell growth in AtT20 cells [1].
ln Vivo In the model of BALB/c-nu mice infected with AtT20 cells, HX630 (5 mg/kg, intraperitoneal injection, three times a week for three weeks) can inhibit the formation of tumors [1].
Cell Assay Cell Viability Assay[1]
Cell Types: AtT20 cells
Tested Concentrations: 0.1, 1, 5, 10 μM
Incubation Duration: 96 h
Experimental Results: Dramatically inhibited AtT20 cell proliferation at 10 μM. diminished Pomc mRNA expression and ACTH secretion in a dose-dependent manner.
Animal Protocol Animal/Disease Models: Female BALB/c-nu (nude) mice (nu/nu) with AtT20 cells[1]
Doses: 5 mg/kg
Route of Administration: ip, 3 times a week for 3 weeks
Experimental Results: Dramatically diminished tumor volume and Pomc mRNA expression in tumor cells, but body weight and plasma ACTH levels were not Dramatically different.
References

[1]. Effects of RXR Agonists on Cell Proliferation/Apoptosis and ACTH Secretion/Pomc Expression. PLoS One. 2015 Dec 29;10(12):e0141960.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2646 mL 11.3230 mL 22.6460 mL
5 mM 0.4529 mL 2.2646 mL 4.5292 mL
10 mM 0.2265 mL 1.1323 mL 2.2646 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.