PeptideDB

Glycolithocholic acid 3-sulfate disodium (Glycolithocholate sulfate disodium; Sulfolithocholylglycin

Glycolithocholic acid 3-sulfate disodium (Glycolithocholate sulfate disodium; Sulfolithocholylglycin

CAS No.: 64936-82-9

Glycolithocholic acid 3-sulfate (disodium) inhibits HIV-1 replication. Glycolithocholic acid 3-sulfate (disodium) is use
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Glycolithocholic acid 3-sulfate (disodium) inhibits HIV-1 replication. Glycolithocholic acid 3-sulfate (disodium) is used to study HIV infection and gallbladder disease.

Physicochemical Properties


Molecular Formula C26H41NNA2O7S
Exact Mass 557.239
CAS # 64936-82-9
Related CAS # Glycolithocholic acid 3-sulfate;15324-64-8;Glycolithocholic acid 3-sulfate-d4 sodium;
PubChem CID 90474464
Appearance White to off-white solid powder
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 7
Rotatable Bond Count 6
Heavy Atom Count 37
Complexity 898
Defined Atom Stereocenter Count 9
SMILES

C[C@H](CCC(=O)NCC(=O)[O-])[C@H]1CC[C@@H]2[C@@]1(CC[C@H]3[C@H]2CC[C@H]4[C@@]3(CC[C@H](C4)OS(=O)(=O)[O-])C)C.[Na+].[Na+]

InChi Key FXMCQRUEVPOMSC-DJOVSRRHSA-L
InChi Code

InChI=1S/C26H43NO7S.2Na/c1-16(4-9-23(28)27-15-24(29)30)20-7-8-21-19-6-5-17-14-18(34-35(31,32)33)10-12-25(17,2)22(19)11-13-26(20,21)3;;/h16-22H,4-15H2,1-3H3,(H,27,28)(H,29,30)(H,31,32,33);;/q;2*+1/p-2/t16-,17-,18-,19+,20-,21+,22+,25+,26-;;/m1../s1
Chemical Name

disodium;2-[[(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3-sulfonatooxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetate
Synonyms

64936-82-9; 3-Sulfoglycolithocholic Acid Disodium Salt; 3ALPHA-HYDROXY-5BETA-CHOLAN 24-OIC ACID N-[CARBOXYMETHYL]AMIDE 3-SULFATE DISODIUM SALT; SLCG (disodium); G77052; disodium;2-[[(4R)-4-[(3R,5R,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-3-sulfonatooxy-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]amino]acetate
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Glycolithocholic acid metabolite; HIV-1; Microbial Metabolite
ln Vitro HIV-1-induced cytopathy is prevented in MT-4 cells by glycolicolectric acid 3-sulfate (100 μg/mL) [1]. 200 μg/mL of glycolic acid 3-sulfate is non-toxic to host cells [1]. In HIV-1-infected CEM cells, glycolic acid 3-sulfate suppresses the production of the HIV-1 antigen [1].
Several cholic acid derivatives such as taurolithocholic acid, lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate were shown to inhibit selectively the replication of human immunodeficiency virus type 1 (HIV-1) in vitro. These compounds completely protected MT-4 cells against HIV-1-induced cytopathogenicity at a concentration of 100 micrograms/ml, whereas no toxicity for the host cells was observed at 200 micrograms/ml. They also inhibited HIV-1 antigen expression in HIV-1-infected CEM cells. The bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid) did not show any inhibitory effect on HIV-1 replication at concentrations that were not toxic to the host (MT-4) cells. From a structure-function analysis of a number of cholic acid derivatives, the presence of either a sulfonate (as in the tauro conjugates) or a sulfate group as well as the "litho" configuration appeared to be necessary for the expression of anti-HIV-1 activity. The active cholic acid derivatives did not directly inactivate the virus particles at the concentrations that were not toxic to the host cells. Lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate, but not taurolithocholic acid, partially inhibited virus adsorption to MT-4 cells. These three compounds were also inhibitory to the reverse transcriptase activity associated with HIV-1[1].
ln Vivo In male Wistar rats with biliary fistulas, glucopyronithocholic acid 3-sulfate (24 μmoL/100 g; intravenous injection, once) enhances bile cholesterol output and promotes intrahepatic cholestasis [2].
Animal Protocol Animal/Disease Models: Male Wistar rats with bile fistula[2]
Doses: 24 μmoL/100 g
Route of Administration: intravenous (iv)injection; 24 μmoL/100 g
Experimental Results: Induced intrahepatic cholestasis and increased biliary cholesterol secretion.
References

[1]. Selective activity of several cholic acid derivatives against human immunodeficiency virus replication in vitro. J Acquir Immune Defic Syndr (1988). 1989;2(3):264-71.

[2]. Lithocholate cholestasis--sulfated glycolithocholate-induced intrahepatic cholestasis in rats. Gastroenterology. 1981 Feb;80(2):233-41.

Additional Infomation Sulfoglycolithocholic acid is the 3-O-sulfo derivative of glycolithocholic acid. It is a steroid sulfate and a bile acid glycine conjugate. It is functionally related to a glycolithocholic acid. It is a conjugate acid of a sulfoglycolithocholate(2-) and a sulfoglycolithocholate anion. Sulfoglycolithocholic acid has been reported in Homo sapiens and Apis cerana with data available.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)