PeptideDB

Germanicol 465-02-1

Germanicol 465-02-1

CAS No.: 465-02-1

Germanicol is a selective anti-tumor agent that suppresses the growth of human colon cancer cell lines HCT-116 and HT29.
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Germanicol is a selective anti-tumor agent that suppresses the growth of human colon cancer cell lines HCT-116 and HT29. Germanicol causes apoptosis through chromatin condensation and DNA damage.

Physicochemical Properties


Molecular Formula C30H50O
Molecular Weight 426.72
Exact Mass 426.386
CAS # 465-02-1
PubChem CID 122857
Appearance White to off-white solid powder
Vapour Pressure 1.1E-11mmHg at 25°C
LogP 8.168
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 1
Rotatable Bond Count 0
Heavy Atom Count 31
Complexity 790
Defined Atom Stereocenter Count 8
SMILES

C[C@@]12CC[C@@]3([C@@H](C1=CC(CC2)(C)C)CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)O)C)C)C

InChi Key QMUXVPRGNJLGRT-PNTWTTAKSA-N
InChi Code

InChI=1S/C30H50O/c1-25(2)15-16-27(5)17-18-29(7)20(21(27)19-25)9-10-23-28(6)13-12-24(31)26(3,4)22(28)11-14-30(23,29)8/h19-20,22-24,31H,9-18H2,1-8H3/t20-,22+,23-,24+,27-,28+,29-,30-/m1/s1
Chemical Name

(3S,4aR,6aS,6aR,6bR,8aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,6a,7,8,9,10,13,14,14a-tetradecahydropicen-3-ol
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro Germanicol displays a strong, dose-dependent cytotoxicity against HCT-116 and HT29 human colon cancer cells that is selective and potent (0-100 µM; 6 h and 24 h). Germanicol causes dose-dependent cell death in HCT-116 and HT29 [1]. Germanicol (0-100 µM; 48 h) dose-dependently causes apoptosis in HCT-116 colon cancer cells [1]. Germanicol (0-100 µM; 0-48 h) prevents HCT-116 colon cancer cells from migrating [1].
Cell Assay Cell Viability Assay[1]
Cell Types: Human colon cancer cell lines HCT-116 (colon), HT29 (colon) and Human colon fibroblast (CCD-18Co).
Tested Concentrations: 0, 5, 10, 20, 40 and 100 µM.
Incubation Duration: 6 h and 24 h.
Experimental Results: demonstrated insignificant cytotoxicity below 20 μM and demonstrated potent and dose-dependent cytotoxic effect on both HCT -116 and HT29 colon cancer cells at higher doses over 40 µM.

Apoptosis Analysis[1]
Cell Types: HCT-116 colon cancer cells.
Tested Concentrations: 0, 10, 40 and 100 µM.
Incubation Duration: 48 h.
Experimental Results: Induced potent and dose-dependent chromatin condensation, accompanied by subsequent DNA damage.

Cell Migration Assay [1]
Cell Types: HCT-116 colon cancer cells.
Tested Concentrations: 0, 10, 40 and 100 µM.
Incubation Duration: 0, 12, 24 and 48 h.
Experimental Results: diminished cell migration tendency.
References

[1]. Dong L C. Germanicol induces selective growth inhibitory effects in human colon HCT-116 and HT29 cancer cells through induction of apoptosis, cell cycle arrest and inhibition of cell migration. 2016.

Additional Infomation Germanicol is a pentacyclic triterpenoid that is oleanane substituted by a hydroxy group at the 3beta-position and with a double bond between positioins 18 and 19. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane.
Germanicol has been reported in Camellia sinensis, Sonchus asper, and other organisms with data available.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3435 mL 11.7173 mL 23.4346 mL
5 mM 0.4687 mL 2.3435 mL 4.6869 mL
10 mM 0.2343 mL 1.1717 mL 2.3435 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.