PeptideDB

Fsh receptor-binding inhibitor fragment(bi-10) 163973-98-6

Fsh receptor-binding inhibitor fragment(bi-10) 163973-98-6

CAS No.: 163973-98-6

FSH receptor-binding inhibitor fragment(bi-10) is a potent FSH antagonist. FSH receptor-binding inhibitor fragment (bi-1
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

FSH receptor-binding inhibitor fragment(bi-10) is a potent FSH antagonist. FSH receptor-binding inhibitor fragment (bi-10) blocks the binding of FSH to FSHR and changes the effects of FSH at the receptor level. FSH receptor-binding inhibitor fragment(bi-10) causes ovulation suppression and follicular atresia in mice. FSH receptor-binding inhibitor fragment (bi-10) inhibits ovarian cancer by down-regulating the overexpression of FSHR and ERβ in the ovary.

Physicochemical Properties


Molecular Formula C42H67N13O19
Molecular Weight 1058.06
Exact Mass 1057.467
CAS # 163973-98-6
PubChem CID 131849328
Appearance White to off-white solid powder
Density 1.4±0.1 g/cm3
Boiling Point 1757.1±65.0 °C at 760 mmHg
Flash Point 1016.4±34.3 °C
Vapour Pressure 0.0±0.6 mmHg at 25°C
Index of Refraction 1.578
LogP -5.91
Hydrogen Bond Donor Count 16
Hydrogen Bond Acceptor Count 20
Rotatable Bond Count 34
Heavy Atom Count 74
Complexity 2120
Defined Atom Stereocenter Count 9
SMILES

C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(=O)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(=O)N)C(=O)NCC(=O)N[C@@H](CCC(=O)O)C(=O)NCC(=O)N)N)O

InChi Key DBFABWRXHHOYAV-JATBZIBASA-N
InChi Code

InChI=1S/C42H67N13O19/c1-18(2)13-23(52-39(71)25(15-28(44)58)53-37(69)21(7-10-32(63)64)50-41(73)34(46)19(3)56)38(70)51-22(8-11-33(65)66)42(74)55-12-4-5-26(55)40(72)54-24(14-27(43)57)36(68)48-17-30(60)49-20(6-9-31(61)62)35(67)47-16-29(45)59/h18-26,34,56H,4-17,46H2,1-3H3,(H2,43,57)(H2,44,58)(H2,45,59)(H,47,67)(H,48,68)(H,49,60)(H,50,73)(H,51,70)(H,52,71)(H,53,69)(H,54,72)(H,61,62)(H,63,64)(H,65,66)/t19-,20+,21+,22+,23+,24+,25+,26+,34+/m1/s1
Chemical Name

(4S)-4-[[2-[[(2S)-4-amino-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S,3R)-2-amino-3-hydroxybutanoyl]amino]-4-carboxybutanoyl]amino]-4-oxobutanoyl]amino]-4-methylpentanoyl]amino]-4-carboxybutanoyl]pyrrolidine-2-carbonyl]amino]-4-oxobutanoyl]amino]acetyl]amino]-5-[(2-amino-2-oxoethyl)amino]-5-oxopentanoic acid
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vivo At high doses (30 mg/kg-40 mg/kg), ovarian and follicle development can be inhibited by FSH receptor-binding inhibitor fragment (bi-10) (10, 20, 30, 40 mg/kg; intramuscular injection; once daily; for 5 consecutive days) reducing the expression levels of ERβ and FSHR mRNA and protein in the ovary and inhibiting the production of E2[1].
Animal Protocol Animal/Disease Models: Prepuberty Kunming female mice of 21-days old and body weight of 22.3±1.52g[1]
Doses: 10, 20, 30, 40 mg/kg
Route of Administration: intramuscular (im) injection; one time/day for five days
Experimental Results: Could attenuate FSH promoting effect on the follicular development, resulting in the poor maturation of ovarian follicles. High dose (40mg/kg) treatment blocked the follicle development of mice. High dose of FRBI (40mg/kg) treatment blocked the follicle development of mice.
References

[1]. FSH receptor binding inhibitor restrains follicular development and possibly attenuates carcinogenesis of ovarian cancer through down-regulating expression levels of FSHR and ERβ in normal ovarian tissues. Gene. 2018 Aug 20;668:174-181.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.9451 mL 4.7256 mL 9.4513 mL
5 mM 0.1890 mL 0.9451 mL 1.8903 mL
10 mM 0.0945 mL 0.4726 mL 0.9451 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.