PeptideDB

FIIN-3 1637735-84-2

FIIN-3 1637735-84-2

CAS No.: 1637735-84-2

FIIN-3 is a novel, potent, selective, irreversible and the next-generation covalent FGFR inhibitor with an IC50 of 13.1,
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

FIIN-3 is a novel, potent, selective, irreversible and the next-generation covalent FGFR inhibitor with an IC50 of 13.1, 21, 31.4, and 35.3 nM for FGFR1, FGFR2, FGFR3 and FGFR4, respectively. FIIN-3 is the first inhibitor that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. FIIN-3 bound with FGFR4 V550L and EGFR L858R.



Physicochemical Properties


Molecular Formula C34H36CL2N8O4
Molecular Weight 691.606844902039
Exact Mass 690.223
CAS # 1637735-84-2
PubChem CID 73707531
Appearance White to off-white solid powder
Density 1.4±0.1 g/cm3
Boiling Point 909.4±65.0 °C at 760 mmHg
Flash Point 503.8±34.3 °C
Vapour Pressure 0.0±0.3 mmHg at 25°C
Index of Refraction 1.683
LogP 5.65
Hydrogen Bond Donor Count 3
Hydrogen Bond Acceptor Count 9
Rotatable Bond Count 11
Heavy Atom Count 48
Complexity 1020
Defined Atom Stereocenter Count 0
InChi Key SFLKJNSBBVSPFE-UHFFFAOYSA-N
InChi Code

InChI=1S/C34H36Cl2N8O4/c1-5-30(45)40-24-8-6-22(7-9-24)20-44(34(46)41-33-31(35)26(47-3)18-27(48-4)32(33)36)29-19-28(37-21-38-29)39-23-10-12-25(13-11-23)43-16-14-42(2)15-17-43/h5-13,18-19,21H,1,14-17,20H2,2-4H3,(H,40,45)(H,41,46)(H,37,38,39)
Chemical Name

N-(4-((3-(2,6-dichloro-3,5-dimethoxyphenyl)-1-(6-((4-(4-methylpiperazin-1-yl)phenyl)amino)pyrimidin-4-yl)ureido)methyl)phenyl)acrylamide
Synonyms

FIIN3; FIIN 3; FIIN-3.
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro FIIN-3 exhibits strong inhibition of both gatekeeper mutants of FGFR2 (EC50 = 64 nM) and WT FGFR (EC50 = 1 to 41 nM). Also, EGFR is significantly inhibited by FIIN-3, with an EC50 of 43 nM. The gatekeeper mutant V564F was effectively inhibited by FIIN-3, while the gatewaykeeper-plus-1 mutant E565K was also successfully targeted by FIIN-3. Furthermore, Ba transformed with EGFR vIII fusion protein (containing the WT EGFR kinase domain) /F3 cells demonstrate antiproliferative activity (EC50 of 135 nM). FIIN-3 exhibited moderate action against the EGFR mutant L858R/T790M mutant, with an EC50 of 231 nM, and greater activity against the EGFR mutant L858R (EC50 of 17 nM). Even at dosages as low as 3 nM, FIIN-3 totally blocked FGFR2 autophosphorylation on Tyr656/657 in WT FGFR2 Ba/F3 cells. FIIN-3 has the ability to partially inhibit FGFR2 mutant V564M autophosphorylation in FGFR2 V564M Ba/F3 cells, and to completely inhibit it at 300 nM [1].
References

[1]. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A, 2014 Nov 11, 111(45):E4869-77.

Additional Infomation N-[4-[[[(2,6-dichloro-3,5-dimethoxyanilino)-oxomethyl]-[6-[4-(4-methyl-1-piperazinyl)anilino]-4-pyrimidinyl]amino]methyl]phenyl]-2-propenamide is a member of piperazines.

Solubility Data


Solubility (In Vitro) DMSO : ~10 mg/mL (~14.46 mM)
Solubility (In Vivo) Solubility in Formulation 1: ≥ 2.5 mg/mL (3.61 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (3.61 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.61 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4459 mL 7.2295 mL 14.4590 mL
5 mM 0.2892 mL 1.4459 mL 2.8918 mL
10 mM 0.1446 mL 0.7230 mL 1.4459 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.