PeptideDB

Daidzein 4'-β-D-glucuronide 264236-77-3

Daidzein 4'-β-D-glucuronide 264236-77-3

CAS No.: 264236-77-3

Daidzein 4'-β-D-glucuronide (Compound M4) is a metabolite of Daidzein.
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Daidzein 4'-β-D-glucuronide (Compound M4) is a metabolite of Daidzein.

Physicochemical Properties


Molecular Formula C21H18O10
Molecular Weight 430.36
Exact Mass 430.09
CAS # 264236-77-3
PubChem CID 23930394
Appearance Typically exists as White to off-white solid at room temperature
LogP 0.436
Hydrogen Bond Donor Count 5
Hydrogen Bond Acceptor Count 10
Rotatable Bond Count 4
Heavy Atom Count 31
Complexity 715
Defined Atom Stereocenter Count 5
SMILES

OC1C=CC2C(C(C3C=CC(O[C@@H]4O[C@H](C(=O)O)[C@@H](O)[C@H](O)[C@H]4O)=CC=3)=COC=2C=1)=O

InChi Key ATUYSKUVHUPXBV-ZFORQUDYSA-N
InChi Code

InChI=1S/C21H18O10/c22-10-3-6-12-14(7-10)29-8-13(15(12)23)9-1-4-11(5-2-9)30-21-18(26)16(24)17(25)19(31-21)20(27)28/h1-8,16-19,21-22,24-26H,(H,27,28)/t16-,17-,18+,19-,21+/m0/s1
Chemical Name

(2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-[4-(7-hydroxy-4-oxochromen-3-yl)phenoxy]oxane-2-carboxylic acid
Synonyms

Daidzein 4'-O-glucuronide; DAIDZEIN 4'-BETA-D-GLUCURONIDE; Daidzein 4'-; A-D-Glucuronide; Daidzein 4'-b-D-Glucuronide; (2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-[4-(7-hydroxy-4-oxochromen-3-yl)phenoxy]oxane-2-carboxylic acid; 4-(7-Hydroxy-4-oxo-4H-1-benzopyran-3-yl)phenyl ss-D-Glucopyranosiduronic Acid;
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Daidzein metabolite
ln Vitro (2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-[4-(7-hydroxy-4-oxo-1-benzopyran-3-yl)phenoxy]-2-oxanecarboxylic acid is an isoflavonoid and a glycoside.
ln Vivo Black soybeans are rich in isoflavones, which have several beneficial health effects. In this study, a validated method based on UHPLC-MS/MS was developed to screen black-soybean metabolites in rat urine, bile, and plasma and to quantify the compounds (daidzein, genistein, glycitein, and daidzin) and their metabolites (daidzein-4'-β-d-glucuronide, genistein-7-β-d-glucuronide, and genistein-4'-β-d-glucuronide) in plasma. Thirty-seven compounds were tentatively detected in the biological samples. The method was fully validated in quantitative experiments, including in assessments of linearity (2.5-100 ng/mL for daidzein, genistein, and glycitein; 10-100 ng/mL for daidzin; 5-3125 ng/mL for genistein-7-β-d-glucuronide; and 5-1562.5 ng/mL for daidzein-4'-β-d-glucuronide and genistein-4'-β-d-glucuronide), matrix effects (85-115%), recovery (80-105%), precision (<10%), and accuracy (<10%). The compounds were stable throughout sample storage, treatment, and analysis. The method was first applied to detect IFs and metabolites in rats after oral administration of black-soybean extract. These results support the potential of this method for successful application in pharmacokinetic studies.[1]
References [1]. Zhang J, et al. Metabolite Identification and Pharmacokinetic Profiling of Isoflavones from Black Soybean in Rats Using Ultrahigh-Performance Liquid Chromatography with Linear-Ion-Trap-Orbitrap and Triple-Quadrupole Tandem Mass Spectrometry. J Agric Food Chem. 2018 Dec 12;66(49):12941-12952.
Additional Infomation (2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-[4-(7-hydroxy-4-oxo-1-benzopyran-3-yl)phenoxy]-2-oxanecarboxylic acid is an isoflavonoid and a glycoside.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3236 mL 11.6182 mL 23.2364 mL
5 mM 0.4647 mL 2.3236 mL 4.6473 mL
10 mM 0.2324 mL 1.1618 mL 2.3236 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.