Physicochemical Properties
| Molecular Formula | C22H20F4N6O2 |
| Molecular Weight | 476.43 |
| CAS # | 2379346-41-3 |
| Appearance | Typically exists as solid at room temperature |
| HS Tariff Code | 2934.99.9001 |
| Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
| Targets | ASK1 22.52 nM (IC50) |
| ln Vitro | CS17919 (0.32-10 μM; 72 hours) provides effective protection to LO2 cells treated with palmitic acid[1]. Apoptosis Analysis[1] Cell Line: L02 cells stimulated with 50 μM Palmitic acid (HY-N0830) Concentration: 0.32 μM, 0.63 μM, 1.25 μM, 2.5 μM, 5 μM, 10 μM Incubation Time: 72 h Result: Significantly prevented apoptosis at all doses. |
| ln Vivo | CS17919 (10-60 mg/kg; oral; twice daily; for 11 days) improves renal injury and fibrosis in the UUO model[1]. CS17919 (50 mg/kg; oral; twice daily; for 70 days) alleviates glomerulosclerosis in the DKD model[1]. CS17919 (20 mg/kg; oral; twice daily; for 4 weeks) improves liver inflammation and fibrosis in the NASH model[1]. Pharmacokinetic parameters of CS17919 in C57BL/6J after oral administration[1]. 1.19 Parameters 20 mg/kg. po 50 mg/kg. po AUC0–∞ (h·ng/mL) 23 113 ± 5898.47 58 795 ± 23 199.32 AUC0–t (h·ng/mL) 23 078 ± 5892.78 57 239 ± 20 606.29 Cmax (ng/mL) 4039 ± 646.90 5741 ± 1835 MRT0–∞ (h) 3.96 ± 0.91 6.43 ± 1.44 T1/2 (h) 2.20 ± 0.74 3.50 ± 1.86 Tmax (h) 1.50 ± 0.87 2.00 ± 0 |
| Animal Protocol |
Animal/Disease Models:Male C57BL/6J mice (6-8 weeks old) bearing unilateral ureteral obstruction model (UUO)[1] Doses: 10 mg/kg, 60 mg/kg (0.2% CMC-Na + 0.1% Tween-80) Route of Administration: po; twice daily; for 11 days Experimental Results: Preserved kidney function and showed a non-significant tendency to alleviate kidney fibrosis. |
| References |
[1]. Targeting ASK1 by CS17919 alleviates kidney- and liver-related diseases in murine models. Animal Model Exp Med. 2024 Jun 14. |
Solubility Data
| Solubility (In Vitro) | May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples |
| Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
| Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
| 1 mM | 2.0989 mL | 10.4947 mL | 20.9894 mL | |
| 5 mM | 0.4198 mL | 2.0989 mL | 4.1979 mL | |
| 10 mM | 0.2099 mL | 1.0495 mL | 2.0989 mL |