PeptideDB

CCG-63808 620113-73-7

CCG-63808 620113-73-7

CAS No.: 620113-73-7

CCG-63808 is a novel, potent and reversible inhibitor of regulator of G-protein signaling (RGS) proteins with IC50 value
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

CCG-63808 is a novel, potent and reversible inhibitor of regulator of G-protein signaling (RGS) proteins with IC50 value of 1.4 μM for RGS4. Regulators of G protein signaling, or RGS, are multifunctional proteins that accelerate GTPase and are crucial in promoting GTP hydrolysis through the heterotrimeric G protein α subunit. A crucial function of RGS 4, also referred to as RGP4, is to negatively regulate signaling upstream or at the heterotrimeric G protein level.



Physicochemical Properties


Molecular Formula C25H15N4O2FS
Molecular Weight 454.4756
Exact Mass 454.09
Elemental Analysis C, 66.07; H, 3.33; F, 4.18; N, 12.33; O, 7.04; S, 7.05
CAS # 620113-73-7
PubChem CID 5948316
Appearance Pink to red solid powder
Density 1.37
Boiling Point 534.5ºC at 760 mmHg
Flash Point 277ºC
Index of Refraction 1.695
LogP 5.608
Hydrogen Bond Donor Count 0
Hydrogen Bond Acceptor Count 7
Rotatable Bond Count 4
Heavy Atom Count 33
Complexity 1030
Defined Atom Stereocenter Count 0
SMILES

N#C/C(C1=NC2=CC=CC=C2S1)=C\C3=C(N=C4C(C)=CC=CN4C3=O)OC5=CC=C(C=C5)F

InChi Key IPZHFKHGSYRBNT-DTQAZKPQSA-N
InChi Code

InChI=1S/C25H15FN4O2S/c1-15-5-4-12-30-22(15)29-23(32-18-10-8-17(26)9-11-18)19(25(30)31)13-16(14-27)24-28-20-6-2-3-7-21(20)33-24/h2-13H,1H3/b16-13+
Chemical Name

(E)-2-(1,3-benzothiazol-2-yl)-3-[2-(4-fluorophenoxy)-9-methyl-4-oxopyrido[1,2-a]pyrimidin-3-yl]prop-2-enenitrile
Synonyms

CCG-63808; CCG63808; CCG 63808
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


References

[1]. Reversible, Allosteric Small-Molecule Inhibitors of Regulator of G Protein Signaling Proteins. Molecular Pharmacology September 2010 vol.78 no.3 524-533.


Solubility Data


Solubility (In Vitro) DMSO: ~1 mg/mL (~2.2 mM)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2003 mL 11.0016 mL 22.0032 mL
5 mM 0.4401 mL 2.2003 mL 4.4006 mL
10 mM 0.2200 mL 1.1002 mL 2.2003 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.