Physicochemical Properties
| Molecular Formula | C18H22N2O5 |
| Molecular Weight | 346.38 |
| Exact Mass | 346.153 |
| CAS # | 1197333-54-2 |
| PubChem CID | 11957480 |
| Appearance | Typically exists as solid at room temperature |
| LogP | 2.332 |
| Hydrogen Bond Donor Count | 4 |
| Hydrogen Bond Acceptor Count | 6 |
| Rotatable Bond Count | 3 |
| Heavy Atom Count | 25 |
| Complexity | 382 |
| Defined Atom Stereocenter Count | 0 |
| SMILES | CN1CCC(CC1)C2=CNC3=C2C=C(C=C3)O.C(=C\C(=O)O)\C(=O)O |
| InChi Key | INGCLXPSKXSYND-BTJKTKAUSA-N |
| InChi Code | InChI=1S/C14H18N2O.C4H4O4/c1-16-6-4-10(5-7-16)13-9-15-14-3-2-11(17)8-12(13)14;5-3(6)1-2-4(7)8/h2-3,8-10,15,17H,4-7H2,1H3;1-2H,(H,5,6)(H,7,8)/b;2-1- |
| Chemical Name | (Z)-but-2-enedioic acid;3-(1-methylpiperidin-4-yl)-1H-indol-5-ol |
| HS Tariff Code | 2934.99.9001 |
| Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
| ln Vitro | Despite its low affinity for other receptors [5-HT1A (63 nM), 5-HT1B (126 nM), 5-HT1D (63 nM), 5-HT2A (1259 nM), 5-HT2B (100 nM), 5- HT2C (316 nM), 5-HT6 (>10,000 nM), 5-HT7 (>10,000 nM), D2 (501 nM), D3 (631 nM), and α1B-adrenoceptors (1259 nM)], BRL54443 binds with high affinity at 5-HT1F receptors[1]. In DG membranes, BRL54443 selectively stimulates 5-HT1E receptors and potently inhibits forskolin-dependent cAMP production (IC50=14 nM). BRL 54443 (MALEATE) (MALEATE) also induces contraction (-log EC50=6.52)[2]. |
| ln Vivo | Reduction of flinching was considered as antinociception. Ipsilateral, but not contralateral, peripheral administration of BRL54443 (5-HT(1E/1F); 3-300 microg/paw) significantly formal reducedin-induced flinching in rats[3]. |
| References |
[1]. Toward selective drug development for the human 5-hydroxytryptamine 1E receptor: a comparison of 5-hydroxytryptamine 1E and 1F receptor structure-affinity relationships. J Pharmacol Exp Ther. 2011 Jun;337(3):860-867. [2]. Characterization of the serotonin receptor mediating contraction in the mouse thoracic aorta and signal pathway coupling. J Pharmacol Exp Ther. 2001 Apr;297(1):88-95. [3]. Distribution of 5-ht(1E) receptors in the mammalian brain and cerebral vasculature: an immunohistochemical and pharmacological study. Br J Pharmacol. 2012 Jun;166(4):1290-302. [4]. The role of peripheral 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F serotonergic receptors in the reduction of nociception in rats. Neuroscience. 2010 Jan 20;165(2):561-8. |
Solubility Data
| Solubility (In Vitro) | May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples |
| Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
| Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
| 1 mM | 2.8870 mL | 14.4350 mL | 28.8700 mL | |
| 5 mM | 0.5774 mL | 2.8870 mL | 5.7740 mL | |
| 10 mM | 0.2887 mL | 1.4435 mL | 2.8870 mL |