Physicochemical Properties
| Molecular Formula | C24H31NO2 |
| Molecular Weight | 365.508446931839 |
| Exact Mass | 365.235 |
| CAS # | 2378463-76-2 |
| PubChem CID | 129012002 |
| Appearance | Typically exists as solid at room temperature |
| LogP | 3.6 |
| Hydrogen Bond Donor Count | 1 |
| Hydrogen Bond Acceptor Count | 2 |
| Rotatable Bond Count | 1 |
| Heavy Atom Count | 27 |
| Complexity | 669 |
| Defined Atom Stereocenter Count | 6 |
| SMILES | C[C@]12CC[C@@H](CC1=CC[C@@H]3[C@@H]2CC[C@]4([C@H]3CC=C4C5=C[N+](=CC=C5)[O-])C)O |
| InChi Key | CZKQCNRNNUYEPR-VJLLXTKPSA-N |
| InChi Code | InChI=1S/C24H31NO2/c1-23-11-9-18(26)14-17(23)5-6-19-21-8-7-20(16-4-3-13-25(27)15-16)24(21,2)12-10-22(19)23/h3-5,7,13,15,18-19,21-22,26H,6,8-12,14H2,1-2H3/t18-,19-,21-,22-,23-,24+/m0/s1 |
| Chemical Name | (3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-(1-oxidopyridin-1-ium-3-yl)-2,3,4,7,8,9,11,12,14,15-decahydro-1H-cyclopenta[a]phenanthren-3-ol |
| Synonyms | Abiraterone N-Oxide; 2378463-76-2; (3S,8R,9S,10R,13S,14S)-10,13-DIMETHYL-17-(1-OXIDOPYRIDIN-1-IUM-3-YL)-2,3,4,7,8,9,11,12,14,15-DECAHYDRO-1H-CYCLOPENTA(A)PHENANTHREN-3-OL; (3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-(1-oxidopyridin-1-ium-3-yl)-2,3,4,7,8,9,11,12,14,15-decahydro-1H-cyclopenta[a]phenanthren-3-ol; Androsta-5,16-dien-3-ol, 17-(1-oxido-3-pyridinyl)-, (3ss)- (ACI); (3ss)-17-(1-Oxido-3-pyridinyl)androsta-5,16-dien-3-ol (ACI); Abiraterone-N-oxide; Y5VR2HCG33; ABIRATERONE METABOLITE M11; |
| HS Tariff Code | 2934.99.9001 |
| Storage |
Powder-20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
| Shipping Condition | Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs) |
Biological Activity
| Targets | CYP17A1 |
| ln Vivo | In this study, a rapid, simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously quantify abiraterone (ABI), a widely used anti-metastatic castration-resistant prostate cancer drug, and its metabolites comprising Δ4-abiraterone (D4A), 3-keto-5α-abiraterone (5αA), abiraterone N-oxide (A-NO), abiraterone sulfate (A-Sul) and abiraterone N-oxide sulfate (A-NO-Sul) in human plasma. The analytes were extracted by protein precipitation with acetonitrile and ideal chromatographic separation was achieved on ACE-C18 column (2.1 × 50 mm, 5 µm) using a gradient elution. Triple Quad™ 6500+ mass spectrometer equipped with an electrospray ionization (ESI) source was used and the multiple reaction mode (MRM) was performed. In terms of method validation, good linearity was observed in preassigned validated concentration range for each analyte of interest. Both intra- and inter-batch accuracy was within the range of 87.6-113.8% for all analytes, while intra- and inter-batch precision was below 14.0%. Additionally, both low matrix effects and high recovery were obtained. All analytes remained stable in human plasma at room temperature for 4 h, on wet ice for 8 h, at - 80 °C for 42 d, over three freeze-thaw cycles and under auto-sampler temperature (4 °C) for 48 h post sample preparation. Subsequently, the validated LC-MS/MS method was applied for pharmacokinetic study in healthy Chinese volunteers following an oral dose of 250 mg abiraterone acetate tablet under fasted conditions. Our study for the first time reported the pharmacokinetic parameters of the ABI metabolites in Chinese subjects.[1] |
| References |
[1]. Simultaneous determination of abiraterone and its five metabolites in human plasma by LC-MS/MS: Application to pharmacokinetic study in healthy Chinese subjects. J Pharm Biomed Anal. 2022 Aug 5;217:114826. |
Solubility Data
| Solubility (In Vitro) | May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples |
| Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples. Injection Formulations (e.g. IP/IV/IM/SC) Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] *Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin → 500 μL Saline) Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO → 100 μLPEG300 → 200 μL castor oil → 650 μL Saline) Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol → 100 μL Cremophor → 800 μL Saline) Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH → 900 μL Corn oil) Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). Oral Formulation 3: Dissolved in PEG400 Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose Oral Formulation 6: Mixing with food powders Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.  (Please use freshly prepared in vivo formulations for optimal results.) |
| Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
| 1 mM | 2.7359 mL | 13.6795 mL | 27.3590 mL | |
| 5 mM | 0.5472 mL | 2.7359 mL | 5.4718 mL | |
| 10 mM | 0.2736 mL | 1.3680 mL | 2.7359 mL |