PeptideDB

AJ-76 ((+)-AJ 76; (1S,2R)-AJ 76) 85379-09-5

AJ-76 ((+)-AJ 76; (1S,2R)-AJ 76) 85379-09-5

CAS No.: 85379-09-5

AJ-76 ((+)-AJ 76; (1S,2R)-AJ 76) is a dopamine autoreceptor antagonist. AJ-76 increases dopamine synthesis and turnover
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

AJ-76 ((+)-AJ 76; (1S,2R)-AJ 76) is a dopamine autoreceptor antagonist. AJ-76 increases dopamine synthesis and turnover in rat brain, but has little effect on the synthesis and turnover of serotonin (5-HT) and norepinephrine. AJ-76 can also antagonize the sedative effects of low-dose apomorphine and has a weak antagonistic effect on postsynaptic dopamine receptors.

Physicochemical Properties


Molecular Formula C15H23NO
Molecular Weight 233.35
Exact Mass 269.155
CAS # 85379-09-5
Related CAS # 85378-82-1
PubChem CID 122334
Appearance Typically exists as solid at room temperature
Density 1g/cm3
Boiling Point 345.3ºC at 760 mmHg
Flash Point 145.9ºC
Index of Refraction 1.526
LogP 4.306
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 2
Rotatable Bond Count 4
Heavy Atom Count 17
Complexity 231
Defined Atom Stereocenter Count 2
SMILES

CCCN[C@@H]1CCC2=C([C@@H]1C)C=CC=C2OC

InChi Key YGHLYBIUVOLKCV-SMDDNHRTSA-N
InChi Code

InChI=1S/C15H23NO/c1-4-10-16-14-9-8-13-12(11(14)2)6-5-7-15(13)17-3/h5-7,11,14,16H,4,8-10H2,1-3H3/t11-,14+/m0/s1
Chemical Name

(1S,2R)-5-methoxy-1-methyl-N-propyl-1,2,3,4-tetrahydronaphthalen-2-amine
Synonyms

85379-09-5; AJ 76; AJ-76; 5-methoxy-1-methyl-2-(n-propylamino)tetralin; (1S,2R)-5-methoxy-1-methyl-N-propyl-1,2,3,4-tetrahydronaphthalen-2-amine; (+)-AJ76; (+)-AJ 76; CHEMBL27441;
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Dopamine autoreceptor
ln Vivo The biochemical and behavioral effects of the putative dopamine autoreceptor antagonists cis-(+)-5-methoxy-1-methyl-2-(n-propylamino)tetralin, (+)-AJ 76 and cis-(+)-5-methoxy-1-methyl-2-(di-n-propylamino)tetralin, (+)-UH 232, were evaluated in various in vivo models in rats. Both compounds produced a marked elevation in brain dopamine synthesis and turnover with only slight effects on the synthesis and turnover of serotonin (5-HT) and noradrenaline being noted. (+)-AJ 76 and (+)-UH 232 also failed to antagonize the decrease in cortical noradrenaline synthesis rate caused by the alpha 2 agonist clonidine. The apomorphine-induced decrease in dopamine synthesis rate in gamma-butyrolactone (GBL) treated animals was completely blocked by (+)-AJ 76 and (+)-UH 232 but not by d-amphetamine or methylphenidate. In activity experiments using habituated animals, (+)-AJ 76 and (+)-UH 232 produced locomotor stimulation and weak stereotypies and antagonized the sedative effects of low doses of apomorphine. Locomotor hyperactivity induced by apomorphine or the dopamine agonist DiPr-5,6-ADTN was antagonized by (+)-UH 232 and to a lesser degree by (+)-AJ 76. The locomotor hyperactivity produced by (+)-AJ 76, (+)-UH 232 and methylphenidate was completely prevented by reserpine pretreatment and partially blocked by the tyrosine hydroxylase inhibitor alpha-methyl-para-tyrosine (alpha-MT), whereas d-amphetamine-induced hyperactivity was only antagonized by alpha-MT pretreatment. It is concluded that (+)-AJ 76 and (+)-UH 232 produce behavioral stimulation via a preferential antagonism on central dopamine autoreceptors, an action different from that of all known stimulants including apomorphine, d-amphetamine and methylphenidate. (+)-AJ 76 and (+)-UH 232 possess but weak antagonistic effects on postsynaptic dopamine receptors and only the latter compound is able to induce sedation in rats [1].
References

[1].(+)-AJ 76 and (+)-UH 232: central stimulants acting as preferential dopamine autoreceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol. 1986 Nov;334(3):234-45.

Additional Infomation (1S,2R)-5-methoxy-1-methyl-2-(propylamino)tetralin is a secondary amino compound that consists of tetralin bearing methyl, propylamino and methoxy groups at positions 1, 2 and 5 respectively. Dopamine receptor antagonist with preferential action at presynaptic receptors (pKi values are 6.95, 6.67, 6.37, 6.21 and 6.07 at hD3. hD4, hD2S, hD2L and rD2 receptors respectively). It has a role as a dopaminergic antagonist. It is a member of tetralins and a secondary amino compound. It is a conjugate base of a (1S,2R)-5-methoxy-1-methyl-2-(propylammonio)tetralin(1+). It derives from a hydride of a tetralin.

Solubility Data


Solubility (In Vitro) Typically soluble in DMSO (e.g. 10 mM)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.2854 mL 21.4270 mL 42.8541 mL
5 mM 0.8571 mL 4.2854 mL 8.5708 mL
10 mM 0.4285 mL 2.1427 mL 4.2854 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.