PeptideDB

15-keto-Prostaglandin E2 (15-keto-PGE2) 26441-05-4

15-keto-Prostaglandin E2 (15-keto-PGE2) 26441-05-4

CAS No.: 26441-05-4

15-keto-Prostaglandin E2 is an endogenously produced metabolite. 15-keto-Prostaglandin E2 inhibits STAT3 activation via
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

15-keto-Prostaglandin E2 is an endogenously produced metabolite. 15-keto-Prostaglandin E2 inhibits STAT3 activation via binding to STAT3 Cys259 residue. 15-keto-Prostaglandin E2 binds to and stabilizes EP2 and EP4 receptors. 15-keto-Prostaglandin E2 suppresses the growth and progression of breast cancer cells. 15-keto-Prostaglandin E2 activates PPAR-γ and promotes fungal growth.

Physicochemical Properties


Molecular Formula C20H30O5
Molecular Weight 350.45
Exact Mass 350.209
CAS # 26441-05-4
Related CAS # 15-Keto-prostaglandin E2-d9;15-Keto-prostaglandin E2-d4
PubChem CID 5280719
Appearance White to off-white solid powder
Density 1.1±0.1 g/cm3
Boiling Point 534.4±50.0 °C at 760 mmHg
Flash Point 291.1±26.6 °C
Vapour Pressure 0.0±3.2 mmHg at 25°C
Index of Refraction 1.552
LogP 1.74
Hydrogen Bond Donor Count 2
Hydrogen Bond Acceptor Count 5
Rotatable Bond Count 12
Heavy Atom Count 25
Complexity 506
Defined Atom Stereocenter Count 3
SMILES

CCCCCC(=O)/C=C/[C@H]1[C@@H](CC(=O)[C@@H]1C/C=C\CCCC(=O)O)O

InChi Key YRTJDWROBKPZNV-KMXMBPPJSA-N
InChi Code

InChI=1S/C20H30O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h4,7,12-13,16-17,19,23H,2-3,5-6,8-11,14H2,1H3,(H,24,25)/b7-4-,13-12+/t16-,17-,19-/m1/s1
Chemical Name

(Z)-7-[(1R,2R,3R)-3-hydroxy-5-oxo-2-[(E)-3-oxooct-1-enyl]cyclopentyl]hept-5-enoic acid
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


References

[1]. 15-Keto prostaglandin E2 suppresses STAT3 signaling and inhibits breast cancer cell growth and progression. Redox Biol. 2019 May;23:101175.

[2]. 15-keto-Prostaglandin E2 exhibits bioactive role by modulating glomerular cytoarchitecture through EP2/EP4 receptors. Life Sci. 2022 Dec 1;310:121114.

[3]. 15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection. PLoS Pathog. 2019 Mar 28;15(3):e1007597.

Additional Infomation 15-dehydro-prostaglandin E2 is a prostaglandins E. It is functionally related to a prostaglandin E2. It is a conjugate acid of a 15-dehydro-prostaglandin E2(1-).
15-keto-prostaglandin E2 has been reported in Gracilariopsis longissima and Gracilaria gracilis with data available.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8535 mL 14.2674 mL 28.5347 mL
5 mM 0.5707 mL 2.8535 mL 5.7069 mL
10 mM 0.2853 mL 1.4267 mL 2.8535 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.