PeptideDB

(S)-(-)-Propranolol hydrochloride ((S)-(-)-Propranolol hydrochloride) 4199-10-4

(S)-(-)-Propranolol hydrochloride ((S)-(-)-Propranolol hydrochloride) 4199-10-4

CAS No.: 4199-10-4

(S)-(-)-PropranololHCl is an adrenergic receptor (β-adrenergic receptor) antagonist (inhibitor) with log Kds of -8.16,
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

(S)-(-)-Propranolol HCl is an adrenergic receptor (β-adrenergic receptor) antagonist (inhibitor) with log Kds of -8.16, -9.08 and -6.93 for β1, β2, and β3 respectively. (S)-(-)-Propranolol HCl may be utilized in studies related to hypertension, pheochromocytoma, myocardial infarction, arrhythmia, angina pectoris and hypertrophic cardiomyopathy.

Physicochemical Properties


Molecular Formula C16H22CLNO2
Molecular Weight 295.80
Exact Mass 295.134
Elemental Analysis C, 64.97; H, 7.50; Cl, 11.98; N, 4.74; O, 10.82
CAS # 4199-10-4
Related CAS # Propranolol hydrochloride;318-98-9;Propranolol-d7 hydrochloride;1613439-56-7
PubChem CID 165193
Appearance White to off-white solid powder
Boiling Point 434.9ºC at 760mmHg
Melting Point 193-195ºC(lit.)
Flash Point 216.8ºC
LogP 3.77
Hydrogen Bond Donor Count 3
Hydrogen Bond Acceptor Count 3
Rotatable Bond Count 6
Heavy Atom Count 20
Complexity 257
Defined Atom Stereocenter Count 1
SMILES

CC(C)NC[C@@H](COC1=CC=CC2=CC=CC=C21)O.Cl

InChi Key ZMRUPTIKESYGQW-UQKRIMTDSA-N
InChi Code

InChI=1S/C16H21NO2.ClH/c1-12(2)17-10-14(18)11-19-16-9-5-7-13-6-3-4-8-15(13)16;/h3-9,12,14,17-18H,10-11H2,1-2H3;1H/t14-;/m0./s1
Chemical Name

(2S)-1-naphthalen-1-yloxy-3-(propan-2-ylamino)propan-2-ol;hydrochloride
Synonyms

(S)-(-)-Propranolol hydrochloride; 4199-10-4; (S)-Propranolol hydrochloride; Levopropranolol hydrochloride; MFCD00064547; (S)-1-Isopropylamino-3-(1-naphthyloxy)-2-propanol hydrochloride; (2s)-1-(isopropylamino)-3-(1-naphthyloxy)propan-2-ol hydrochloride; YP6GDU0L78;
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets β adrenergic receptor
ln Vitro Beta-adrenoceptor antagonists ("beta-blockers") are one of the most widely used classes of drugs in cardiovascular medicine (hypertension, ischaemic heart disease and increasingly in heart failure) as well as in the management of anxiety, migraine and glaucoma. Where known, the mode of action in cardiovascular disease is from antagonism of endogenous catecholamine responses in the heart (mainly at beta1-adrenoceptors), while the worrisome side effects of bronchospasm result from airway beta2-adrenoceptor blockade. The aim of this study was to determine the selectivity of beta-antagonists for the human beta-adrenoceptor subtypes. (3)H-CGP 12177 whole cell-binding studies were undertaken in CHO cell lines stably expressing either the human beta1-, beta2- or the beta3-adrenoceptor in order to determine the affinity of ligands for each receptor subtype in the same cell background. In this study, the selectivity of well-known subtype-selective ligands was clearly demonstrated: thus, the selective beta1 antagonist CGP 20712A was 501-fold selective over beta2 and 4169-fold selective over beta3; the beta2-selective antagonist ICI 118551 was 550- and 661-fold selective over beta1 and beta3, respectively, and the selective beta3 compound CL 316243 was 10-fold selective over beta2 and more than 129-fold selective over beta1. Those beta2-adrenoceptor agonists used clinically for the treatment of asthma and COPD were beta2 selective: 29-, 61- and 2818-fold for salbutamol, terbutaline and salmeterol over beta1, respectively. There was little difference in the affinity of these ligands between beta1 and beta3 adrenoceptors. The clinically used beta-antagonists studied ranged from bisoprolol (14-fold beta1-selective) to timolol (26-fold beta2-selective). However, the majority showed little selectivity for the beta1- over the beta2-adrenoceptor, with many actually being more beta2-selective. This study shows that the beta1/beta2 selectivity of most clinically used beta-blockers is poor in intact cells, and that some compounds that are traditionally classed as "beta1-selective" actually have higher affinity for the beta2-adrenoceptor. There is therefore considerable potential for developing more selective beta-antagonists for clinical use and thereby reducing the side-effect profile of beta-blockers. [1]
References

[1]. The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol. 2005 Feb;144(3):317-22.


Solubility Data


Solubility (In Vitro) DMSO: 50 mg/mL (169.03 mM)
H2O: ≥ 10 mg/mL (33.81 mM)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.3807 mL 16.9033 mL 33.8066 mL
5 mM 0.6761 mL 3.3807 mL 6.7613 mL
10 mM 0.3381 mL 1.6903 mL 3.3807 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.