PeptideDB

(R,R)-Palonosetron Hydrochloride 135729-75-8

(R,R)-Palonosetron Hydrochloride 135729-75-8

CAS No.: 135729-75-8

(R,R)-Palonosetron Hydrochloride is the active R,R-enantiomer of Palonosetron HCl (RS25259, RS-25259 197; trade name: Al
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

(R,R)-Palonosetron Hydrochloride is the active R,R-enantiomer of Palonosetron HCl (RS25259, RS-25259 197; trade name: Aloxi and Akynzeo) which is a 5-HT3 antagonist approved in 2018 in the prevention and treatment of chemotherapy-induced nausea and vomiting. Fosnetupitant and palonosetron together have been approved by the FDA in April 2018 to prevent acute and delayed nausea and vomiting that is linked to first- and second-course highly emetogenic cancer chemotherapy. Palonosetron is a second-generation, highly selective, potent antagonist of the 5-HT3 receptor with a binding affinity for the receptor that is approximately 100 times higher than that of other antagonists of the 5-HT3 receptor (pKi 10.5 compared with 8.91 for granisetron, 8.81 for tropisetron, 8.39 for ondansetron, and 7.6 for dolasetron).



Physicochemical Properties


Molecular Formula C19H24N2O.HCL
Molecular Weight 332.87
Exact Mass 332.17
Elemental Analysis C, 76.99; H, 8.16; N, 9.45; O, 5.40
CAS # 135729-75-8
Related CAS # Palonosetron hydrochloride; 135729-62-3; Palonosetron; 135729-61-2
PubChem CID 18651160
Appearance Solid
Density 1.2±0.1 g/cm3
Boiling Point 470.4±45.0 °C at 760 mmHg
Flash Point 209.5±21.1 °C
Vapour Pressure 0.0±1.2 mmHg at 25°C
Index of Refraction 1.646
LogP 2.61
Hydrogen Bond Donor Count 1
Hydrogen Bond Acceptor Count 2
Rotatable Bond Count 1
Heavy Atom Count 23
Complexity 456
Defined Atom Stereocenter Count 2
SMILES

O=C1N(C[C@]([H])(CCC2)C3=C2C=CC=C13)[C@H]4CN5CCC4CC5.[H]Cl

InChi Key OLDRWYVIKMSFFB-NBLXOJGSSA-N
InChi Code

InChI=1S/C19H24N2O.ClH/c22-19-16-6-2-4-14-3-1-5-15(18(14)16)11-21(19)17-12-20-9-7-13(17)8-10-20;/h2,4,6,13,15,17H,1,3,5,7-12H2;1H/t15-,17-;/m0./s1
Chemical Name

(3aR)-2-[(3R)-1-azabicyclo[2.2.2]octan-3-yl]-3a,4,5,6-tetrahydro-3H-benzo[de]isoquinolin-1-one;hydrochloride
Synonyms

(R,R)-RS 25259, RS-25233-197; RS25233-198; RS 25259 197; RS 25233-197; (R,R)-RS25233-197; RS-25233-198; RS 25233-198; RS-25259-197; (R,R)-Palonosetron hydrochloride; US brand name: Aloxi and Akynzeo
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets 5-HT3 Receptor
ln Vitro

In vitro activity: Palonosetron is a second-generation, highly selective, potent antagonist of the 5-HT3 receptor with a binding affinity for the receptor that is approximately 100 times higher than that of other antagonists of the 5-HT3 receptor (pKi 10.5 compared with 8.91 for granisetron, 8.81 for tropisetron, 8.39 for ondansetron, and 7.6 for dolasetron). Additionally, palonosetron has an extended plasma elimination half-life of about 40 hours, which is substantially longer than that of other drugs in its class (ranisetron, 8.9 hours; tropisetron, 7.3 hours; dolasetron, 7.5 hours).

ln Vivo Quantitative autoradiographic studies in rat brain indicated a differential distribution of 5-HT3receptor sites by [3H]-RS 25259-197. High densities of sites were seen in nuclear tractus solitaris and area postrema, a medium density in spinal trigeminal tract, ventral dentate gyrus and basal medial amygdala,and a low density of sites in hippocampal CAl, parietal cortex, medium raphe and cerebellum.7 In conclusion, the functional, binding and distribution studies undertaken with the radiolabelled and non-radiolabelled RS 25259-197 (S,S enantiomer) established the profile of a highly potent and selective5-HT3 receptor antagonist[2].
Enzyme Assay Palonosetron is a second-generation, highly selective, potent antagonist of the 5-HT3 receptor with a binding affinity for the receptor that is approximately 100 times higher than that of other antagonists of the 5-HT3 receptor (pKi 10.5 compared with 8.91 for granisetron, 8.81 for tropisetron, 8.39 for ondansetron, and 7.6 for dolasetron).
Cell Assay Palonosetron is a 5-HT3 antagonist used to treat and prevent nausea and vomiting brought on by chemotherapy (CINV). IC50 Value: Among the 5-HT3 antagonists, 5-HT3 Receptor Palonosetron is the most successful in managing delayed CINV nausea and vomiting that manifests over a 24-hour period following the initial dosage of a chemotherapy regimen.
Animal Protocol Autoradiographical studies[2]
Coronal sections of rat and mouse brains were cut at 20 ,um thickness. Sections were dried and pre-incubated in Tris-HCl buffer (50 mM Tris, 120 mM NaCl, pH 7.4, 22°C) for 30 min. The sections were then covered with the same buffer contain- -4 ing 1.0 nM [3H]-RS 42358-197 or [3H]-RS 25259-197 for 60 min at 22°C. Non-specific binding was defined in the presence of 1.0 tLM (S)-zacopride. The incubations were ter- -n minated by rinsing the slides for two washes of 5 min in ice cold buffer. The sections were dried and apposed, together with 3H polymer standards (Amersham, Inc.) to tritiumsensitive X-ray film for 24 weeks. The autoradiograms were then analysed by digital image analysis with the MCID imaging system (Imaging Research, Inc.). Brain areas were verified on cresyl violet stained sections after autoradiography, using the areas described in the rat brain atlas of Paxinos & Watson (1985).
References

[1]. Ann Oncol . 2003 Oct;14(10):1570-7.

[2]. Br J Pharmacol . 1995 Feb;114(4):851-9.


Solubility Data


Solubility (In Vitro)
DMSO: <1 mg/mL
Water: ~67 mg/mL (~201.3 mM)
Ethanol: <1 mg/mL
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0042 mL 15.0209 mL 30.0418 mL
5 mM 0.6008 mL 3.0042 mL 6.0084 mL
10 mM 0.3004 mL 1.5021 mL 3.0042 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.