PeptideDB

(5R)-Dinoprost ((5R)-dinoprost; Prostaglandin F2β; PGF2β) 4510-16-1

(5R)-Dinoprost ((5R)-dinoprost; Prostaglandin F2β; PGF2β) 4510-16-1

CAS No.: 4510-16-1

(5R)-Dinoprost (Prostaglandin F2β) is a metabolite generated by arachidonic acid cyclooxygenase metabolism. (5R)-Dinopr
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

(5R)-Dinoprost (Prostaglandin F2β) is a metabolite generated by arachidonic acid cyclooxygenase metabolism. (5R)-Dinoprost causes dose-dependent release of hexose-containing mucins.

Physicochemical Properties


Molecular Formula C20H34O5
Molecular Weight 354.48
Exact Mass 354.24
Elemental Analysis C, 67.77; H, 9.67; O, 22.57
CAS # 4510-16-1
Related CAS # Dinoprost;551-11-1
PubChem CID 5280506
Appearance Typically exists as solid at room temperature
Density 1.2±0.1 g/cm3
Boiling Point 531.0±50.0 °C at 760 mmHg
Melting Point 105-106ºC
Flash Point 289.0±26.6 °C
Vapour Pressure 0.0±3.2 mmHg at 25°C
Index of Refraction 1.569
LogP 2.14
Hydrogen Bond Donor Count 4
Hydrogen Bond Acceptor Count 5
Rotatable Bond Count 12
Heavy Atom Count 25
Complexity 432
Defined Atom Stereocenter Count 5
SMILES

O([H])[C@]1([H])C([H])([H])[C@]([H])([C@]([H])(/C(/[H])=C(\[H])/[C@]([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])O[H])[C@@]1([H])C([H])([H])/C(/[H])=C(/[H])\C([H])([H])C([H])([H])C([H])([H])C(=O)O[H])O[H]

InChi Key PXGPLTODNUVGFL-JZFBHDEDSA-N
InChi Code

InChI=1S/C20H34O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h4,7,12-13,15-19,21-23H,2-3,5-6,8-11,14H2,1H3,(H,24,25)/b7-4-,13-12+/t15-,16+,17+,18+,19+/m0/s1
Chemical Name

(Z)-7-[(1R,2R,3R,5R)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid
Synonyms

Prostaglandin F2beta; 4510-16-1; PGF2beta; Prostaglandin F2b; 9beta,11alpha-Prostaglandin F2; PGF2b; Prostaglandin F2-beta; 9beta,11alpha-PGF2a;
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Endogenous Metabolite
ln Vitro Arachidonic acid-derived prostaglandins not only contribute to the development of inflammation as intercellular pro-inflammatory mediators, but also promote the excitability of the peripheral somatosensory system, contributing to pain exacerbation. Peripheral tissues undergo many forms of diseases that are frequently accompanied by inflammation. The somatosensory nerves innervating the inflamed areas experience heightened excitability and generate and transmit pain signals. Extensive studies have been carried out to elucidate how prostaglandins play their roles for such signaling at the cellular and molecular levels. Here, we briefly summarize the roles of arachidonic acid-derived prostaglandins, focusing on four prostaglandins and one thromboxane, particularly in terms of their actions on afferent nociceptors. We discuss the biosynthesis of the prostaglandins, their specific action sites, the pathological alteration of the expression levels of related proteins, the neuronal outcomes of receptor stimulation, their correlation with behavioral nociception, and the pharmacological efficacy of their regulators. This overview will help to a better understanding of the pathological roles that prostaglandins play in the somatosensory system and to a finding of critical molecular contributors to normalizing pain[2].
ln Vivo Gastric mucin glycoproteins form an adherent gel over the surface epithelium that is thought to protect the stomach against chemical and physical damage. The purpose of this study was to measure the release of mucin glycoproteins from rat stomach after treatment with cysteamine and prostaglandin F2 beta, two structurally unrelated drugs that have been shown to protect the stomach against the noxious effects of alcohol and other damaging agents. Gastric mucin was separated into soluble (washout) and insoluble (adherent) phases before colorimetric quantitation of total mucin, protein-bound hexose, and sialic acid. Cysteamine produced a dose-dependent increase in release of soluble and gel mucin. Prostaglandin F2 beta caused a dose-dependent release of hexose-containing mucin but had no effect on sialic acid-containing glycoproteins. Sepharose 4B chromatography of both the soluble and adherent mucus revealed that greater than 90% was a high molecular weight glycoprotein fraction. N-Ethylmaleimide, a known inhibitor of cytoprotection by cysteamine, had no effect on mucin secretion. Similarly, indomethacin inhibited mucin secretion by cysteamine but did not significantly influence cytoprotection. Thus the secretion of mucin by cytoprotective agents is unlikely by itself to explain the ability of the stomach to resist chemical or physical damage[2].
References

[1]. Cysteamine and prostaglandin F2 beta stimulate rat gastric mucin release. Gastroenterology. 1983 Feb;84(2):306-13.

[2]. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation. 2020 Jan 22;17(1):30.

Additional Infomation Prostaglandin F2beta is a prostaglandins Falpha that is prosta-5,13-dien-1-oic acid substituted by hydroxy groups at positions 9, 11 and 15. It is the 9beta-hydroxy epimer of prostaglandin F2alpha. It has a role as a human metabolite. It is a conjugate acid of a prostaglandin F2beta(1-).
Prostaglandin F2beta has been reported in Homo sapiens, Gracilariopsis longissima, and Gracilaria gracilis with data available.

Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8210 mL 14.1052 mL 28.2103 mL
5 mM 0.5642 mL 2.8210 mL 5.6421 mL
10 mM 0.2821 mL 1.4105 mL 2.8210 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.