PeptideDB

(1S,3R,5R)-PIM447 dihydrochloride

(1S,3R,5R)-PIM447 dihydrochloride

CAS No.:

(1S,3R,5R)-PIM447 dihydrochloride a potent PIM inhibitor extracted with IC50 values of 0.095 μM for Pim1, 0.522 μM for
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

(1S,3R,5R)-PIM447 dihydrochloride a potent PIM inhibitor extracted with IC50 values of 0.095 μM for Pim1, 0.522 μM for Pim2 and 0.369 μM for Pim3. It is the isomer of PIM447 (also known as LGH447) which is a novel and potent pan-PIM (proviral insertion site of Moloney murine leukemia) kinase inhibitor with Ki values of 6 pM, 18 pM, 9 pM for PIM1, PIM2, PIM3 respectively. It also inhibits GSK3β, PKN1, and PKCτ, but at a significantly lower potency with IC50 between 1 and 5 μM (>105-fold differential relative to the Ki on PIMs). PIM447 is cytotoxic for myeloma cells due to cell cycle disruption and induction of apoptosis mediated by a decrease in phospho-Bad (Ser112) and c-Myc levels and the inhibition of mTORC1 pathway. PIM447 is currently undergoing several clinical trials.



Physicochemical Properties


Molecular Formula C₂₇H₂₉CL₂N₇O₂S
Molecular Weight 586.54
Related CAS # :1820565-69-2 (2HCl); 1210608-43-7; 1210416-52-6 (HCl)
Appearance White to off-white solid powder
SMILES

O=C(NCC1=CC=C(S(C2=CC(F)=CC(F)=C2)(=O)=O)C=C1)C3=CN4C(C=C3)=NC=C4.Cl

Synonyms

(1S,3R,5R)-PIM447 dihydrochloride; (1S,3R,5R)-PIM-447; (1S,3R,5R)-PIM 447; (1S,3R,5R)-LGH-447 dihydrochloride; (1S,3R,5R)-LGH 447; (1S,3R,5R)-LGH447
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro

In vitro activity: The kinase selectivity of PIM447 is first determined in biochemical assays for a panel of 68 diverse protein kinases that included PIM2 as well as 9 lipid kinases. In this panel, only PIM2 is significantly inhibited by PIM447 with an IC50 of<0.003 1= 5= the= lowest= sensitivity= range= for= assay.= pim447= also= inhibits= and= but= at= a= significantly= lower= potency= with= ic50= between= m=>105-fold differential relative to the Ki on PIMs). The biochemical IC50 for all other kinases tested in this panel is >9 μM. In follow-up cellular assays of GSK3β inhibition, PIM447 is tested up to 20 μM and is not active. PIM447 is cytotoxic for myeloma cells due to cell-cycle disruption and induction of apoptosis mediated by a decrease in phospho-Bad (Ser112) and c-Myc levels and the inhibition of mTORC1 pathway. PIM447 also inhibits in vitro osteoclast formation and resorption, downregulates key molecules involved in these processes, and partially disrupts the F-actin ring, while increasing osteoblast activity and mineralization.


Kinase Assay: PIM447 (also known as LGH447) is a novel and potent pan-PIM (proviral insertion site of Moloney murine leukemia) kinase inhibitor with Ki values of 6 pM, 18 pM, 9 pM for PIM1, PIM2, PIM3 respectively. It also inhibits GSK3β, PKN1, and PKCτ, but at a significantly lower potency with IC50 between 1 and 5 μM (>105-fold differential relative to the Ki on PIMs).


Cell Assay: PIM447 is cytotoxic for myeloma cells due to cell cycle disruption and induction of apoptosis mediated by a decrease in phospho-Bad (Ser112) and c-Myc levels and the inhibition of mTORC1 pathway. Following treatment of KG-1 cells with PIM447 for 2 h at the indicated concentrations, cells are lysed in RIPA buffer. Protein concentration is determined using a BCA assay, and 50 μg of lysate is separated by SDS-PAGE using 10% bis-Tris gels. Proteins are transferred onto 0.2 μm nitrocellulose membrane, and pS6RP/total S6RP are detected. Following incubation with secondary antibodies, antibody binding is detected using ECL Advance.

ln Vivo
Low to moderate in vivo CL is observed for PIM447 across species, as CL values of 20, 28, and 8 mL/min/kg are observed in mouse, rat, and dog, respectively. The volume of distribution is consistently large across species, with Vss of 5.3, 6.4, and 3.6 L/kg observed in mouse, rat, and dog, respectively. Additionally, PIM447 exhibits high oral bioavailability across species, as 84%, 70%, and 71% is observed in mouse, rat, and dog, respectively. The stability of PIM447 in human plasma is high, >90% after a 3 h incubation, and the human plasma protein binding of PIM447 is 95%. With the combination of potent in vitro activity and low to moderate CL, PIM447 demonstrates in vivo target modulation (pS6RP), single agent antitumor activity in a KG-1 AML mouse xenograft model, and druglike properties suitable for development. PIM447 significantly reduces the tumor burden and prevents tumor-associated bone loss in a disseminated murine model of human myeloma.
Animal Protocol
50 mM acetate buffer, pH 4; 30 or 100 mg/kg; p.o.
KG-1 AML xenograft mouse model
References J Med Chem.2015 Nov 12;58(21):8373-86;Clin Cancer Res.2017 Jan 1;23(1):225-238.

Solubility Data


Solubility (In Vitro)
DMSO: 88 mg/mL (184.5 mM)
Water:<1 mg/mL
Ethanol:88 mg/mL (184.5 mM)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7049 mL 8.5246 mL 17.0491 mL
5 mM 0.3410 mL 1.7049 mL 3.4098 mL
10 mM 0.1705 mL 0.8525 mL 1.7049 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.