PeptideDB

Trovafloxacin (CP-99219) 147059-72-1

Trovafloxacin (CP-99219) 147059-72-1

CAS No.: 147059-72-1

Trovafloxacin (CP-99219) is a broad-spectrum quinolone antibiotic thatinhibits DNA supercoiling in various bacteria by b
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Trovafloxacin (CP-99219) is a broad-spectrum quinolone antibiotic thatinhibits DNA supercoiling in various bacteria by blocking the activity of DNA gyrase and topoisomerase IV. It haspotent activity against Gram-positive, Gram-negative and anaerobic organisms. Trovafloxacin blocks the DNA gyrase and topoisomerase IV activity. Trovafloxacin is also a highly potent, specific and orally bioavailable pannexin 1 channel (PANX1) inhibitor with an IC50 of 4 μM for PANX1 inward current. Trovafloxacin does not inhibit connexin 43 gap junction or PANX2. Trovafloxacin leads to dysregulated fragmentation of apoptotic cells by inhibiting PANX1.

Physicochemical Properties


Molecular Formula C20H15F3N4O3
Molecular Weight 416.35
Exact Mass 416.11
CAS # 147059-72-1
Related CAS # Trovafloxacin mesylate;147059-75-4
PubChem CID 62959
Appearance White to light yellow solid powder
Density 1.612g/cm3
Boiling Point 630.5ºC at 760mmHg
Melting Point 246ºC
Flash Point 335.1ºC
Vapour Pressure 9.21E-17mmHg at 25°C
Index of Refraction 1.672
LogP 2.659
Hydrogen Bond Donor Count 2
Hydrogen Bond Acceptor Count 10
Rotatable Bond Count 3
Heavy Atom Count 30
Complexity 770
Defined Atom Stereocenter Count 2
SMILES

C1[C@@H]2[C@@H](C2N)CN1C3=C(C=C4C(=O)C(=CN(C4=N3)C5=C(C=C(C=C5)F)F)C(=O)O)F

InChi Key WVPSKSLAZQPAKQ-SOSAQKQKSA-N
InChi Code

InChI=1S/C20H15F3N4O3/c21-8-1-2-15(13(22)3-8)27-7-12(20(29)30)17(28)9-4-14(23)19(25-18(9)27)26-5-10-11(6-26)16(10)24/h1-4,7,10-11,16H,5-6,24H2,(H,29,30)/t10-,11+,16
Chemical Name

7-[(1R,5S)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl]-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,8-naphthyridine-3-carboxylic acid
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets Quinolone
ln Vitro HepG2 cells exposed to trovafloxacin (20 µM; 24 hours) and tumor necrosis factor (TNF; 4 ng/mL) exhibit increased lactate dehydrogenase (LDH) leakage and apoptosis.After incubating HepG2 cells with trovafloxacin (20 µM) for 24 hours and TNF (4 ng/mL), the expression of early NF-κB-related factors A20 and IκBα is increased.In HepG2, trovafloxacin prolongs TNF-induced MAPK activation and IKKα/β activation[1].
Effectively preventing apoptotic cells from absorbing TO-PRO-3 is trovafloxacin. Moreover, trovafloxacin prevents apoptotic cells from releasing ATP. Trovafloxacin does not prevent PANX1 cleavage during apoptosis or caspase 3/7 activation[2].
With MICs of 0.06-0.25 mg/mL recorded for over 700 isolates, trovafloxacin is equally effective against pneumococci that are susceptible to penicillin as well as those that are resistant to it. Trovafloxacin's minimum inhibitory concentration (MIC) for 90% of pneumococci isolates is 0.125 μg/mL [3].
ln Vivo Treatment with trovafloxacin (150 mg/kg; oral; male C57BL/6 J mice) prevents the nuclear translocation of p65 that is induced by TNF. Treatment with trovafloxacin increases the expression of IκBα and A20, early NF-κB-related factors[1].When trovafloxacin is given to mice along with lipopolysaccharide (LPS) or tumor necrosis factor (TNF), it causes severe liver toxicity that is accompanied by large areas of the liver that are apoptotic, elevated serum levels of alanine amino transferases (ALT), and pro-inflammatory cytokines[1].
Animal Protocol Animal Model: Male C57BL/6 J mice (9-11-week-old) injected with recombinant murine TNF ion[1]
Dosage: 150 mg/kg
Administration: Oral administration
Result: revealed a higher proportion of cells in the liver with an elevated nuclear/cytoplasmic p65 ratio.
ADME/Pharmacokinetics Absorption, Distribution and Excretion
Well-absorbed from the gastrointestinal tract after oral administration and does not depend on concomitant food intake. The absolute bioavailability is approximately 88%.
Approximately 50% of an oral dose is excreted unchanged (43% in the feces and 6% in the urine).
Metabolism / Metabolites
Metabolism Trovafloxacin is metabolized by conjugation (the role of cytochrome P450 oxidative metabolism of trovafloxacin is minimal). The major metabolites include the ester glucuronide, which appears in the urine (13% of the administered dose); and the N -acetyl metabolite, which appears in the feces and serum (9% and 2.5% of the administered dose, respectively). Other minor metabolites include diacid, hydroxycarboxylic acid, and sulfamate, which have been identified in both the feces and the urine in small amounts (< 4% of the administered dose).
Trovafloxacin has known human metabolites that include (2S,3S,4S,5R)-6-[7-[(1R,5S)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl]-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,8-naphthyridine-3-carbonyl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid.
Biological Half-Life
Following oral administration, half-life ranged from 9.1 hours to 12.2 hours over the dosage range of 100 to 200 mg tablets. Following intravenous infusion, half-life ranged from 9.4 to 12.7 hours over a dosage range of 100 to 300 mg.
Toxicity/Toxicokinetics Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of trovafloxacin during breastfeeding; however, amounts in breastmilk appear to be low. Fluoroquinolones have traditionally not been used in infants because of concern about adverse effects on the infants' developing joints. However, recent studies indicate little risk. The calcium in milk might prevent absorption of the small amounts of fluoroquinolones in milk, but insufficient data exist to prove or disprove this assertion. Use of trovafloxacin is acceptable in nursing mothers with monitoring of the infant for possible effects on the gastrointestinal flora, such as diarrhea or candidiasis (thrush, diaper rash). However, it is preferable to use an alternate drug for which safety information is available.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
The mean plasma protein bound fraction is approximately 76%, and is concentration-independent.
References

[1]. The hepatotoxic fluoroquinolone trovafloxacin disturbs TNF- and LPS-induced p65 nuclear translocation in vivo and in vitro. Toxicol Appl Pharmacol. 2020 Mar 15;391:114915.

[2]. Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature. 2014 Mar 20;507(7492):329-34.

[3]. Activity of the new fluoroquinolone trovafloxacin (CP-99,219) against DNA gyrase and topoisomerase IV mutants of Streptococcus pneumoniae selected in vitro. Antimicrob Agents Chemother. 1996 Dec;40(12):2691-7.

Additional Infomation Trovafloxacin is a 1,8-naphthyridine derivative that is 4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid bearing additional 2,4-difluorophenyl, fluoro and 6-amino-3-azabicyclo[3.1.0]hex-3-yl substituents at positions 1, 6 and 7 respectively. A broad-spectrum antibiotic that was withdrawn from the market due to risk of liver failure. It has a role as an antimicrobial agent, a hepatotoxic agent, a topoisomerase IV inhibitor, a DNA synthesis inhibitor and an antibacterial drug. It is a 1,8-naphthyridine derivative, an amino acid, a monocarboxylic acid, an azabicycloalkane, a tertiary amino compound, a primary amino compound, a quinolone antibiotic, a fluoroquinolone antibiotic and a difluorobenzene. It is a conjugate base of a trovafloxacin(1+).
Trovafloxacin is a broad spectrum antibiotic that has been commonly marketed under the brand name Trovan by Pfizer. It exerts its antibacterial activity by inhibiting the uncoiling of supercoiled DNA in various bacteria by blocking the activity of DNA gyrase and topoisomerase IV. It was shown to be more effective against Gram-positive bacteria than Gram-negative bacteria when compared to previous fluoroquinolones. Due to its hepatotoxic potential, trovafloxacin was withdrawn from the market.
Drug Indication
For treatment of infections caused by susceptible strains of the designated microorganisms in uncomplicated urethral gonorrhea in males and endocervical and rectal gonorrhea in females caused by Neisseria gonorrhoeae as well as non gonoccocal urethritis and cervicitis due to Chlamydia trachomatis.
Trovafloxacin is a synthetic broad spectrum quinolone antibacterial agent indicated for the treatment of the following infections in adults: Pneumonia: Community Acquired Pneumonia and Nosocomial Pneumonia (mild, moderate, and severe). Note: Efficacy in patients with very severe nosocomial pneumonia and in particular infections due to less susceptible pathogens e. g. P. aeruginosa, has not been established. See also section 4. 2. Acute Exacerbations of Chronic BronchitisAcute SinusitisComplicated Intra-abdominal Infections and Acute Pelvic InfectionsSalpingitisUncomplicated Gonococcal Urethritis and CervicitisChlamydial CervicitisComplicated Skin and Soft Tissue InfectionsConsideration should be given to official guidance on the appropriate use of antibacterial agents.
Trovafloxacin is a synthetic broad spectrum quinolone antibacterial agent indicated for the treatment of the following infections in adults: Pneumonia: Community Acquired Pneumonia and Nosocomial Pneumonia (mild, moderate, and severe). Note: Efficacy in patients with very severe nosocomial pneumonia and in particular infections due to less susceptible pathogens e. g. P. aeruginosa, has not been established. See also section 4. 2. Acute Exacerbations of Chronic BronchitisAcute SinusitisComplicated Intra-abdominal Infections and Acute Pelvic InfectionsSalpingitisUncomplicated Gonococcal Urethritis and CervicitisChlamydial CervicitisComplicated Skin and Soft Tissue InfectionsConsideration should be given to official guidance on the appropriate use of antibacterial agents.
Mechanism of Action
Trovafloxacin is a fluoronaphthyridone related to the fluoroquinolones with in vitro activity against a wide range of gram-negative and gram-positive aerobic and anaerobic microorganisms. The bactericidal action of trovafloxacin results from inhibition of DNA gyrase and topoisomerase IV. DNA gyrase is an essential enzyme that is involved in the replication, transcription, and repair of bacterial DNA. Topoisomerase IV is an enzyme known to play a key role in the partitioning of the chromosomal DNA during bacterial cell division.
Pharmacodynamics
Trovafloxacin is a broad spectrum antibiotic that inhibits DNA supercoiling in various bacteria by blocking the activity of DNA gyrase and topoisomerase IV. It is not used widely due to the risk of hepatotoxicity. It tends to have better gram-positive bacterial coverage and less gram-negative coverage than the previous fluoroquinolones. Mechanism of action of fluoroquinolones including trovafloxacin is different from that of penicillins, cephalosporins, aminoglycosides, macrolides, and tetracyclines. Therefore fluoroquinolones may be active against pathogens that are resistant to these antibiotics. There is no cross-resistance between trovafloxacin and the mentioned classes of antibiotics. The overall results obtained from in vitro synergy studies, testing combinations of trovafloxacin with beta-lactams and aminoglycosides, indicate that synergy is strain specific and not commonly encountered. This agrees with results obtained previously with other fluoroquinolones. Resistance to trovafloxacin in vitro develops slowly via multiple-step mutation in a manner similar to other fluoroquinolones. Resistance to trovafloxacin in vitro occurs at a general frequency of between 1x10-7 to 10-10. Although cross-resistance has been observed between trovafloxacin and some other fluoroquinolones, some microorganisms resistant to other fluoroquinolones may be susceptible to trovafloxacin.

Solubility Data


Solubility (In Vitro) DMSO : ~9.09 mg/mL (~21.83 mM)
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4018 mL 12.0091 mL 24.0183 mL
5 mM 0.4804 mL 2.4018 mL 4.8037 mL
10 mM 0.2402 mL 1.2009 mL 2.4018 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.