PeptideDB

Rucaparib (AG-014699) 283173-50-2

Rucaparib (AG-014699) 283173-50-2

CAS No.: 283173-50-2

Rucaparib (formerly known as AG-14447; AG-014699; PF-01367338; Rubraca) is an inhibitor of PARP [ (poly(ADP-Ribose) poly
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Rucaparib (formerly known as AG-14447; AG-014699; PF-01367338; Rubraca) is an inhibitor of PARP [ (poly(ADP-Ribose) polymerase)] with anticancer effects. In a cell-free assay, it inhibits PARP1 with a Ki of 1.4 nM. The FDA approved rucaparib in 2016 for the treatment of ovarian cancer in female patients. Rucaparib binds specifically to PARP1 and prevents PARP1 from repairing damaged DNA, which increases the number of breaks in DNA strands and encourages apoptosis and genomic instability. This could reverse tumor cell resistance to chemotherapy and radiation therapy and increase the cytotoxicity of agents that damage DNA.


Physicochemical Properties


Molecular Formula C19H18FN3O
Molecular Weight 323.37
Exact Mass 323.143
Elemental Analysis C, 70.57; H, 5.61; F, 5.88; N, 12.99; O, 4.95
CAS # 283173-50-2
Related CAS # 1859053-21-6 (camsylate); 459868-92-9 (phosphate); 283173-50-2
PubChem CID 9931954
Appearance Yellow solid powder
Density 1.3±0.1 g/cm3
Boiling Point 625.2±55.0 °C at 760 mmHg
Flash Point 331.9±31.5 °C
Vapour Pressure 0.0±1.8 mmHg at 25°C
Index of Refraction 1.649
LogP 2.85
Hydrogen Bond Donor Count 3
Hydrogen Bond Acceptor Count 3
Rotatable Bond Count 3
Heavy Atom Count 24
Complexity 466
Defined Atom Stereocenter Count 0
SMILES

FC1=C([H])C2C(N([H])C([H])([H])C([H])([H])C3=C(C4C([H])=C([H])C(C([H])([H])N([H])C([H])([H])[H])=C([H])C=4[H])N([H])C(=C1[H])C3=2)=O

InChi Key HMABYWSNWIZPAG-UHFFFAOYSA-N
InChi Code

InChI=1S/C19H18FN3O/c1-21-10-11-2-4-12(5-3-11)18-14-6-7-22-19(24)15-8-13(20)9-16(23-18)17(14)15/h2-5,8-9,21,23H,6-7,10H2,1H3,(H,22,24)
Chemical Name

6-fluoro-2-[4-(methylaminomethyl)phenyl]-3,10-diazatricyclo[6.4.1.04,13]trideca-1,4,6,8(13)-tetraen-9-one
Synonyms

AG014699; PF-01367338; AG 14447; AG 014699; PF 01367338; AG-014699,PF01367338; AG-14447; AG14447; Trade name: Rubraca
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


Targets PARP-1 ( Ki = 1.4 nM ); PARP-2; PARP-3
ln Vitro

Rucaparib (AG014699) is a potential AG14644 N-demethylation metabolite[1].
Rucaparib (0.1, 1, 10, 100 μM; 24 hours) is cytotoxic; in Capan-1 (BRCA2 mutant) cells, its LC50 is 5 μM, while in MX-1 (BRCA1 mutant) cells, it is only 100 nM[2].
Rucaparib causes radiosensitization independent of SSB repair inhibition, as it inhibits NF-κB activation downstream. Without impairing other essential inflammatory functions, rucaparib can target NF-κB that is activated by DNA damage and overcome the toxicity seen with classical NF-κB inhibitors[5].
Rucaparib inhibits PARP-1 activity in permeabilized D283Med cells by 97.1% at a concentration of 1 μM[6].

ln Vivo
Rucaparib (AG014699) and AG14584 greatly heighten the toxicity of temozolomide. The amount of body weight lost when using Temozolomide is greatly increased by Rucaparib (1 mg/kg). A 50% increase in the temozolomide-induced tumor growth delay is observed when rucaparib (0.1 mg/kg) is administered[1].
Rucaparib (10 mg/kg for intraperitoneal injection or 50–150 mg/kg for parenteral administration; five days a week for six weeks) dramatically slows tumor growth and causes one complete tumor regression and two persistent partial tumor regressions[2].
Rucaparib has the strongest antitumor effect with three full regressions at 150 mg/kg p.o. administered once or three times a week for six weeks[2].
Rucaparib improves temozolomide's antitumor activity and shows full and long-lasting tumor regression in NB1691 and SHSY5Y xenografts[6].
Enzyme Assay The amount of [32P]NAD+ incorporation-induced inhibition of human full-length recombinant PARP-1 is measured. With a PhosphorImager, the amount of [32P]ADP-ribose added to acid-insoluble material is measured. The nonlinear regression analysis is used to calculate Ki.
Cell Assay The MTT assay is used to measure cell proliferation. In 96-well plates, the cells are seeded at a density of 5×103 cells/ml in a volume of 200 μl/well. The following day, DMSO, BKM120, or rucaparib are added in varying concentrations to the cells. Each well receives 20 μl of MTT (5 mg/ml) after four days. Following an additional 4-hour incubation period at 37 °C, the absorbance at 490 nm is determined. CalcuSyn software is used to analyze data from growth inhibitory experiments in order to ascertain the effect of drug combinations. Next, combination indexes (CI) are computed.
Animal Protocol Determination of Antitumor Activity In vivo[1]
Female athymic nude mice (CD1 nu/nu) used for antitumor studies were maintained and handled in isolators under specific pathogen-free conditions. We implanted SW620 colorectal tumor cells (1 × 107 cells per animal) s.c. into one flank of each mouse, treated the mice (five animals per group) when tumors were palpable (10–12 days after implantation), and monitored tumor growth using two-dimensional caliper measurements. Tumor volume was calculated using the equation a2 × b / 2, where a is the smallest measurement and b is the largest. Data are presented as median relative tumor volumes (RTV), defined as the calculated tumor volume divided by the calculated tumor volume on the initial day of treatment (day 0). Thus, on day 0, the RTV value is 1 and RTV4 is when the tumor is four times as large as its initial value.
Single-Dose Studies. [1]
We administered a single dose of temozolomide p.o. as a suspension in saline at 200 mg/kg either alone or in combination with a single i.p. administration of PARP inhibitor administered at 0.1 [AG14447 and MS-AG14644 (equivalent to 0.078 mg/kg free AG14644 only)], 1.0, and 10 mg/kg (for the mesylate salts equivalent to 0.79 and 7.9 mg/kg free AG14451 and AG14452 and 0.78 and 7.8 free AG14531 and AG14644). Control animals were treated with either normal saline p.o. and i.p or normal saline p.o and PARP inhibitor 10 mg/kg i.p.
Five Daily Dosing Studies. [1]
We treated animals with five daily doses of temozolomide administered p.o. as a suspension in saline at 68 mg/kg either alone or in combination with a five daily i.p. administrations of PARP inhibitor at 0.05, 0.15, and 0.5 mg/kg AG14447; 0.15 and 0.5 mg/kg MS-AG14644 (equivalent to 0.12 and 0.39 mg/kg free AG14644); 1.5, 5, and 15 mg/kg AG14361; and 5 mg/kg AG14452. Control animals were treated with either normal saline p.o. and i.p. or normal saline p.o and PARP inhibitor at the higher dose (0.5, 5, or 15 mg/kg, depending on the compound studied) i.p.
Tissue Distribution[1]
We administered AG14361, AG14452, or AG14447 (10 mg/kg i.p.) to mice (three animals per group) bearing SW620 xenografts (∼10 × 10 mm). After 120 min, the animals were bled by cardiac puncture, under general anesthesia, the tumor was removed and snap frozen on liquid nitrogen. Plasma was removed and stored at −20°C. The concentrations of PARP inhibitor in acetonitrile-treated plasma and homogenized tumor were measured using reverse-phase high-pressure liquid chromatography (isocratic mobile phase: 40% acetonitrile in 0.1% ammonium formate, Hypersil BDS 3 μm 4.6 × 250 mm column, Waters Alliance 2690 high-pressure liquid chromatography; Waters, Elstree, Herts, United Kingdom) by the method of addition.
Dissolved in saline; 1 mg/kg; One or four daily by i.p.
CD-1 nude mice bearing established D283Med xenografts
ADME/Pharmacokinetics Absorption, Distribution and Excretion
Rucaparib exhibits a linear pharmacokinetic profile over the dose range from 240 mg to 840 mg twice daily. The mean (coefficient of variation [CV]) steady-state rucaparib Cmax is 1940 ng/mL (54%) and AUC0-12h is 16900 h x ng/mL (54%) at the approved recommended dosage. The mean AUC accumulation ratio is 3.5 to 6.2 fold. The median Tmax at the steady state is 1.9 hours, with a range of 0 to 5.98 hours at the approved recommended dosage. The mean absolute bioavailability is 36%, with a range of 30 to 45%. A high-fat meal increased Cmax and AUC0-24h by 20% and 38%, respectively. The Tmax was delayed by 2.5 hours.
Following a single oral dose of radiolabeled rucaparib, unchanged rucaparib accounted for 64% of the radioactivity. Rucaparib accounted for 45% and 95% of radioactivity in urine and feces, respectively.
The mean (coefficient of variation) apparent volume of distribution is 2300 L (21%).
The mean (coefficient of variation) apparent total clearance at steady state is 44.2 L/h (45%).
Metabolism / Metabolites
In vitro, rucaparib is primarily metabolized by CYP2D6 and, to a lesser extent, by CYP1A2 and CYP3A4. In addition to CYP-based oxidation, rucaparib also undergoes N-demethylation, N-methylation, and glucuronidation. In one study, seven metabolites of rucaparib were identified in plasma, urine, and feces.
Biological Half-Life
The mean (coefficient of variation) terminal elimination half-life is 26 (39%) hours.
Toxicity/Toxicokinetics Hepatotoxicity
In large clinical trials of rucaparib, abnormalities in routine liver tests were common; serum ALT elevations arising in 74% with values above 5 times the upper limit of normal (ULN) in 13%. Despite the frequency of serum enzyme elevations during therapy in clinical trials, there were no reports of hepatitis with jaundice or liver failure. Subsequent to its approval and more wide scale use, there have been no published reports of clinically apparent liver injury attributed to rucaparib. Thus, rucaparib is a frequent cause of serum enzyme elevations, but has not been linked to significant hepatotoxicity.
Likelihood score: E* (unproven but suspected cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the clinical use of rucaparib during breastfeeding. The manufacturer recommends that breastfeeding be discontinued during rucaparib therapy and for 2 weeks after the last dose.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Rucaparib is 70% bound to human plasma proteins _in vitro_. Rucaparib preferentially distributed to red blood cells with a blood-to-plasma concentration ratio of 1.8.
References

[1]. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther, 2007, 6(3), 945-956.

[2]. Tumour cell retention of rucaparib, sustained PARP inhibition and efficacy of weekly as well as daily schedules. Br J Cancer. 2014 Apr 15;110(8):1977-84.

[3]. Inhibition of poly(ADP-ribose) polymerase-1 enhances temozolomide and topotecan activity against childhood neuroblastoma. Clin Cancer Res, 2009, 15(4), 1241-1249.

[4]. Hexose-6-phosphate dehydrogenase blockade reverses prostate cancer drug resistance in xenograft models by glucocorticoid inactivation. Sci Transl Med. 2021 May 26;13(595):eabe8226.

[5]. NF-κB mediates radio-sensitization by the PARP-1 inhibitor, AG-014699. Oncogene, 2012, 31(2), 251-264.

[6]. Rucaparib: A Review in Ovarian Cancer. Target Oncol. 2019 Apr;14(2):237-246.

Additional Infomation Pharmacodynamics
Rucaparib is an anticancer agent that exerts cytotoxic effects against cancer cells. It works by inhibiting poly (ADP-ribose) polymerase (PARP), an enzyme that plays a role in DNA repair. Rucaparib inhibits PARP-1, PARP-2, and PARP-3. It also interacts with PARP-4, PARP-10, PARP-12, PARP-15, and PARP-16, but to a lesser extent. In mice, rucaparib accumulated and was retained in tumours, inhibiting PARP enzymes for seven days. Rucaparib decreases tumour growth in tumour cell lines with deficiencies in BRCA1/2 and other DNA repair genes. In addition to PARP inhibition, rucaparib demonstrated PARP-independent cytotoxic mechanisms in cancer cells. When co-administered with other chemotherapeutic agents, rucaparib contributed to synergistic or additive effects _in vitro_ and _in vivo_. There is evidence that rucaparib can sensitize cancer cells to chemotherapy. Rucaparib can also cause vasodilation, which may increase tumour perfusion and enhance the accumulation of cytotoxic drugs in cancer cells.

Solubility Data


Solubility (In Vitro)
DMSO: ~10 mM
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo) Solubility in Formulation 1: ≥ 2.5 mg/mL (7.73 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (7.73 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 3: ≥ 2.5 mg/mL (7.73 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

Solubility in Formulation 4: 30% propylene glycol, 5% Tween 80, 65% D5W: 30mg/mL

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0924 mL 15.4622 mL 30.9243 mL
5 mM 0.6185 mL 3.0924 mL 6.1849 mL
10 mM 0.3092 mL 1.5462 mL 3.0924 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.