Description |
BAPTA-AM is a calcium chelator that is cell-permeable and selective, blocking hERG, hKv1.3, and hKv1.5 channels (IC50=1.3/1.45/1.23 μM). BAPTA-AM has a 105-fold higher affinity for Ca2+ than for Mg2+, and can be used for the role of calcium in cell signaling. |
In vitro |
方法:软骨细胞用 BAPTA-AM (10 μM) 和 FAC (100 μM) 处理 24 h,使用 Reactive Oxygen Species Assay kit 检测细胞内 ROS 水平。结果:FAC 促进 ROS 的产生,并且这种作用被 钙螯合剂 BAPTA-AM 抑制。[1]方法:大鼠成纤维细胞 RAT2 和 Xenopus 细胞用 BAPTA-AM (50 μM) 处理 1 h,使用 Immunostaining 检测微管解聚情况。结果:BAPTA AM 处理 30 min 后在大多数细胞中几乎完全解体,并且微管在 60 min 内在细胞中均匀解聚。[2] |
In vivo |
方法:为研究对乙醇诱导的运动活性的影响,将 BAPTA-AM (0-10 mg/kg,Cremophor EL 1.25% (v/v) in distilled water) 腹腔注射给 Swiss (RjOrl) 小鼠,30 min 后注射 ethanol (0-4 g/kg)。结果:用 BAPTA-AM 预处理可以在不改变基础运动的情况下阻止乙醇产生的运动刺激。相反,BAPTA-AM 逆转了乙醇诱导的催眠作用。[3]方法:为研究对 LPS 诱导的血脑屏障渗漏的影响,将 BAPTA-AM (12 mg/kg,0.01% pluronic acid in sterile saline) 静脉注射给 FVB 小鼠,30 min 后腹腔注射 LPS (25 mg/kg)。结果:BAPTA-AM 可减少 LPS 诱导的血脑屏障渗漏。[4] |
Target activity |
Kv1.3 (human, HEK293 cells):1.45 μM (IC50), Kv1.5 (human, HEK293 cells):1.23 μM (IC50), ERG channel (human, HEK293 cells):1.3 μM (IC50) |
Synonyms |
BAPTA/AM |
molecular weight |
764.68 |
Molecular formula |
C34H40N2O18 |
CAS |
126150-97-8 |
Storage |
keep away from direct sunlight | Powder: -20°C for 3 years | In solvent: -80°C for 1 year |
Solubility |
DMSO: 50 mg/mL (65.39 mM), Sonication is recommended. |
References |
1. Jing X, et al. Calcium chelator BAPTA‑AM protects against iron overload‑induced chondrocyte mitochondrial dysfunction and cartilage degeneration. Int J Mol Med. 2021 Oct;48(4):196. 2. Saoudi Y, et al. Calcium-independent cytoskeleton disassembly induced by BAPTA. Eur J Biochem. 2004 Aug;271(15):3255-64. 3. Baliño P, et al. Intracellular calcium chelation with BAPTA-AM modulates ethanol-induced behavioral effects in mice. Exp Neurol. 2012 Apr;234(2):446-53. 4. De Bock M, et al. Targeting gliovascular connexins prevents inflammatory blood-brain barrier leakage and astrogliosis. JCI Insight. 2022 Aug 22;7(16):e135263. 5. Tian C, Huang R, Tang F, et al. Transient Receptor Potential Ankyrin 1 Contributes to Lysophosphatidylcholine-Induced Intracellular Calcium Regulation and THP-1-Derived Macrophage Activation[J]. The Journal of Membrane Biology. 2019: 1-13. 6. Pan X, Li R, Guo H, et al. Dihydropyridine Calcium Channel Blockers Suppress the Transcription of PD-L1 by Inhibiting the Activation of STAT1[J]. Frontiers in Pharmacology. 2021, 11: 2233. 7. Yan T, Zhao Y. Acetaldehyde induces phosphorylation of dynamin-related protein 1 and mitochondrial dysfunction via elevating intracellular ROS and Ca2+ levels. Redox Biology. 2019: 101381. 8. Ge C, Huang H, Huang F, et al. Neurokinin-1 receptor is an effective target for treating leukemia by inducing oxidative stress through mitochondrial calcium overload[J]. Proceedings of the National Academy of Sciences. 2019: 201908998. |
Citations |
1. He C L, Huang L Y, Wang K, et al. Identification of bis-benzylisoquinoline alkaloids as SARS-CoV-2 entry inhibitors from a library of natural products in vitro. Signal transduction and targeted therapy. 2021 Mar 23;6(1):131. 2. Yang Y, Yang P, Huang C, et al. Inhibitory effect on SARS-CoV-2 infection of neferine by blocking Ca2+ -dependent membrane fusion. Journal of Medical Virology. 2021, 93(10): 5825-5832 3. Ge C, Huang H, Huang F, et al. Neurokinin-1 receptor is an effective target for treating leukemia by inducing oxidative stress through mitochondrial calcium overload. Proceedings of the National Academy of Sciences. 2019, 116(39): 19635-19645 4. Yan T, Zhao Y. Acetaldehyde induces phosphorylation of dynamin-related protein 1 and mitochondrial dysfunction via elevating intracellular ROS and Ca2+ levels. Redox Biology. 2019: 101381 5. Zheng Q, Zou Y, Teng P, et al. Mechanosensitive Channel PIEZO1 Senses Shear Force to Induce KLF2/4 Expression via CaMKII/MEKK3/ERK5 Axis in Endothelial Cells. Cells. 2022, 11(14): 2191 6. Yi Y, Gao K, Zhang L, et al. Zearalenone Induces MLKL-Dependent Necroptosis in Goat Endometrial Stromal Cells via the Calcium Overload/ROS Pathway. International Journal of Molecular Sciences. 2022, 23(17): 10170. 7. Pan X, Li R, Guo H, et al. Dihydropyridine Calcium Channel Blockers Suppress the Transcription of PD-L1 by Inhibiting the Activation of STAT1. Frontiers in Pharmacology. 2021 Jan 13;11:539261. doi: 10.3389/fphar.2020.539261. eCollection 2020. 8. Tian C, Huang R, Tang F, et al. Transient Receptor Potential Ankyrin 1 Contributes to Lysophosphatidylcholine-Induced Intracellular Calcium Regulation and THP-1-Derived Macrophage Activation. The Journal of Membrane Biology. 2019: 1-13 9. Xia Q, Zheng H, Li Y, et al.SMURF1 controls the PPP3/calcineurin complex and TFEB at a regulatory node for lysosomal biogenesis.Autophagy.2023: 1-17. 10. Pan X, Hu Y, Lei G, et al.Actomyosin-II protects axons from degeneration induced by mild mechanical stress.Journal of Cell Biology.2024, 223(8). |