| Bioactivity | Azimilide-d8 (dihydrochloride) is the deuterium labeled Azimilide dihydrochloride. Azimilide Dihydrochloride (NE-10064 Dihydrochloride) is a class III antiarrhythmic compound, inhibits I(Ks) and I(Kr) in guinea-pig cardiac myocytes and I(Ks) (minK) channels expressed in Xenopus oocytes. |
| Invitro | Stable heavy isotopes of hydrogen, carbon, and other elements have been incorporated into drug molecules, largely as tracers for quantitation during the drug development process. Deuteration has gained attention because of its potential to affect the pharmacokinetic and metabolic profiles of drugs[1]. |
| Name | Azimilide-d8 (dihydrochloride) |
| Formula | C23H22D8Cl3N5O3 |
| Molar Mass | 538.92 |
| Transport | Room temperature in continental US; may vary elsewhere. |
| Storage | Please store the product under the recommended conditions in the Certificate of Analysis. |
| Reference | [1]. Russak EM, et al. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216. [2]. Busch AE, et al. Blockade of HERG channels by the class III antiarrhythmic azimilide: mode of action. Br J Pharmacol. 1998 Jan;123(1):23-30. [3]. Yao JA, et al. Azimilide (NE-10064) can prolong or shorten the action potential duration in canine ventricular myocytes: dependence on blockade of K, Ca, and Na channels. J Cardiovasc Electrophysiol. 1997 Feb;8(2):184-98. [4]. Fermini B, et al. Use-dependent effects of the class III antiarrhythmic agent NE-10064 (azimilide) on cardiac repolarization: block of delayed rectifier potassium and L-type calcium currents. J Cardiovasc Pharmacol. 1995 Aug;26(2):259-71. [5]. Black SC, et al. Protection against programmed electrical stimulation-induced ventricular tachycardia and sudden cardiac death by NE-10064, a class III antiarrhythmic drug. J Cardiovasc Pharmacol. 1993 Dec;22(6):810-8. |