PeptideDB

dUTP trisodium (2'-Deoxyuridine-5'-triphosphate trisodium salt) 102814-08-4

dUTP trisodium (2'-Deoxyuridine-5'-triphosphate trisodium salt) 102814-08-4

CAS No.: 102814-08-4

dUTP trisodium is the raw material used for PCR amplification.
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

dUTP trisodium is the raw material used for PCR amplification.

Physicochemical Properties


Molecular Formula C9H12N2NA3O14P3
Molecular Weight 534.09
Exact Mass 511.937
CAS # 102814-08-4
Related CAS # dUTP sodium;94736-09-1
PubChem CID 65070
Appearance White to off-white solid powder
Density 2.01g/cm3
LogP -5.5
Hydrogen Bond Donor Count 6
Hydrogen Bond Acceptor Count 14
Rotatable Bond Count 8
Heavy Atom Count 28
Complexity 808
Defined Atom Stereocenter Count 3
SMILES

C1[C@@H]([C@H](O[C@H]1N2C=CC(=O)NC2=O)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)O

InChi Key AHCYMLUZIRLXAA-SHYZEUOFSA-N
InChi Code

InChI=1S/C9H15N2O14P3/c12-5-3-8(11-2-1-7(13)10-9(11)14)23-6(5)4-22-27(18,19)25-28(20,21)24-26(15,16)17/h1-2,5-6,8,12H,3-4H2,(H,18,19)(H,20,21)(H,10,13,14)(H2,15,16,17)/t5-,6+,8+/m0/s1
Chemical Name

[[(2R,3S,5R)-5-(2,4-dioxopyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate
Synonyms

2'-Deoxyuridine-5'-triphosphate trisodium salt; dUTP trisodium
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ADME/Pharmacokinetics Metabolism / Metabolites
Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure.
Toxicity/Toxicokinetics Toxicity Summary
Deoxyuridine triphosphate (dUTP) can be misincorporated into DNA and cause DNA damage. The extent of DNA damage caused by dUTP is dependent on the levels of the pyrophosphatase dUTPase and uracil-DNA glycosylase (UDG). DNA damage due to dUTP misincorporation is highly dependent on the levels of the pyrophosphatase dUTPase, which limits intracellular accumulation of dUTP. (A4337) Also, loss of viability following thymidylate synthase (TS) inhibition occurs as a consequence of accumulation of dUTP in some cell lines and subsequent misincorporation of uracil into DNA. (PMCID: PMC2364072)
References

[1]. dUTP incorporation into genomic DNA is linked to transcription in yeast. Nature. 2009 Jun 25;459(7250):1150-3.

Additional Infomation DUTP is a deoxyuridine phosphate having a triphosphate group at the 5'-position. It has a role as a human metabolite, an Escherichia coli metabolite, a mouse metabolite and an Arabidopsis thaliana metabolite. It is a pyrimidine 2'-deoxyribonucleoside 5'-triphosphate and a deoxyuridine phosphate. It is a conjugate acid of a dUTP(3-).
Deoxyuridine triphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Deoxyuridine triphosphate has been reported in Homo sapiens and Bos taurus with data available.
Deoxyuridine Triphosphate is a uracil nucleotide comprised of three phosphate groups esterified to the deoxyribose sugar moiety.
Deoxyuridine triphosphate is an intermediate in the metabolism of Pyrimidine. It is a substrate for Inosine triphosphate pyrophosphatase, Deoxyuridine 5'-triphosphate nucleotidohydrolase (mitochondrial), Uridine-cytidine kinase 1, Nucleoside diphosphate kinase 3, Nucleoside diphosphate kinase B, Nucleoside diphosphate kinase 6, Nucleoside diphosphate kinase (mitochondrial), Nucleoside diphosphate kinase homolog 5, Nucleoside diphosphate kinase A and Nucleoside diphosphate kinase 7.
Deoxyuridine triphosphate is a metabolite found in or produced by Saccharomyces cerevisiae.

Solubility Data


Solubility (In Vitro) H2O : ~125 mg/mL (~234.0 mM)
DMSO : < 1 mg/mL
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8723 mL 9.3617 mL 18.7234 mL
5 mM 0.3745 mL 1.8723 mL 3.7447 mL
10 mM 0.1872 mL 0.9362 mL 1.8723 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.