PeptideDB

Toremifene-d6 citrate (toremifene d6 citrate (citrate)) 1246833-71-5

Toremifene-d6 citrate (toremifene d6 citrate (citrate)) 1246833-71-5

CAS No.: 1246833-71-5

Toremifene-d6 (citrate) is the deuterated form of Toremifene citrate. Toremifene citrate (Z-Toremifene citrate) is a sec
Sales Email:peptidedb@qq.com

This product is for research use only, not for human use. We do not sell to patients.

Toremifene-d6 (citrate) is the deuterated form of Toremifene citrate. Toremifene citrate (Z-Toremifene citrate) is a second-generation selective estrogen receptor modulator with IC50 of 1 μM for the estrogen receptor. Toremifene citrate is also effective against infectious EBOV Zaire and Marburg (MARV) with IC50 of 0.07 µM and 2.6 µM, respectively.

Physicochemical Properties


Molecular Formula C32H30D6CLNO8
Molecular Weight 604.12
Exact Mass 603.25
CAS # 1246833-71-5
Related CAS # Toremifene citrate;89778-27-8;Toremifene-d6 hydrochloride
PubChem CID 71752631
Appearance Typically exists as solid at room temperature
Hydrogen Bond Donor Count 4
Hydrogen Bond Acceptor Count 9
Rotatable Bond Count 14
Heavy Atom Count 42
Complexity 710
Defined Atom Stereocenter Count 0
SMILES

[2H]C([2H])([2H])N(CCOC1=CC=C(C=C1)/C(=C(/CCCl)\C2=CC=CC=C2)/C3=CC=CC=C3)C([2H])([2H])[2H].C(C(=O)O)C(CC(=O)O)(C(=O)O)O

InChi Key IWEQQRMGNVVKQW-JUFCHOJXSA-N
InChi Code

InChI=1S/C26H28ClNO.C6H8O7/c1-28(2)19-20-29-24-15-13-23(14-16-24)26(22-11-7-4-8-12-22)25(17-18-27)21-9-5-3-6-10-21;7-3(8)1-6(13,5(11)12)2-4(9)10/h3-16H,17-20H2,1-2H3;13H,1-2H2,(H,7,8)(H,9,10)(H,11,12)/b26-25-;/i1D3,2D3;
Chemical Name

2-[4-[(Z)-4-chloro-1,2-diphenylbut-1-enyl]phenoxy]-N,N-bis(trideuteriomethyl)ethanamine;2-hydroxypropane-1,2,3-tricarboxylic acid
HS Tariff Code 2934.99.9001
Storage

Powder-20°C 3 years

4°C 2 years

In solvent -80°C 6 months

-20°C 1 month

Shipping Condition Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)

Biological Activity


ln Vitro Drug compounds have included stable heavy isotopes of carbon, hydrogen, and other elements, mostly as quantitative tracers while the drugs were being developed. Because deuteration may have an effect on a drug's pharmacokinetics and metabolic properties, it is a cause for concern [1].
References

[1]. Impact of Deuterium Substitution on the Pharmacokinetics of Pharmaceuticals. Ann Pharmacother. 2019;53(2):211-216.

[2]. Matthew R Smith, Selective Estrogen Receptor Modulators to Prevent Treatment-Related Osteoporosis.Rev Urol. 2005; 7(Suppl 3): S30-S35.

[3]. Screening and Reverse-Engineering of Estrogen Receptor Ligands as Potent Pan-Filovirus Inhibitors. J Med Chem. 2020 Sep 4.

[4]. Gauri J Sabnis, Luciana Macedo, Olga Goloubeva, Toremifene - Atamestane; Alone or In Combination: Predictions from the Preclinical Intratumoral Aromatase Model. J Steroid Biochem Mol Biol. 2008 January; 108(1-2): 1-7.

[5]. Taneja SS, Morton R, Barnette G, Prostate cancer diagnosis among men with isolated high-grade intraepithelial neoplasia enrolled onto a 3-year prospective phase III clinical trial of oral toremifene. J Clin Oncol. 2013 Feb 10;31(5):523-9.


Solubility Data


Solubility (In Vitro) May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo) Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300:Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)

Oral Formulations Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders

Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.6553 mL 8.2765 mL 16.5530 mL
5 mM 0.3311 mL 1.6553 mL 3.3106 mL
10 mM 0.1655 mL 0.8277 mL 1.6553 mL
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.